首页> 外文期刊>Atmospheric chemistry and physics >Monitoring global tropospheric OH concentrations using satellite observations of atmospheric methane
【24h】

Monitoring global tropospheric OH concentrations using satellite observations of atmospheric methane

机译:使用卫星观测大气甲烷监测全球对流层OH浓度

获取原文
           

摘要

The hydroxyl radical (OH) is the main tropospheric oxidant and the main sink for atmospheric methane. The global abundance of OH has been monitored for the past decades using atmospheric methyl chloroform ( CHsub3/subCClsub3/sub ) as a proxy. This method is becoming ineffective as atmospheric CHsub3/subCClsub3/sub concentrations decline. Here we propose that satellite observations of atmospheric methane in the short-wave infrared (SWIR) and thermal infrared (TIR) can provide an alternative method for monitoring global OH concentrations. The premise is that the atmospheric signature of the methane sink from oxidation by OH is distinct from that of methane emissions. We evaluate this method in an observing system simulation experiment (OSSE) framework using synthetic SWIR and TIR satellite observations representative of the TROPOMI and CrIS instruments, respectively. The synthetic observations are interpreted with a Bayesian inverse analysis, optimizing both gridded methane emissions and global OH concentrations. The optimization is done analytically to provide complete error accounting, including error correlations between posterior emissions and OH concentrations. The potential bias caused by prior errors in the 3-D seasonal OH distribution is examined using OH fields from 12 different models in the ACCMIP archive. We find that the satellite observations of methane have the potential to constrain the global tropospheric OH concentration with a precision better than 1?% and an accuracy of about 3?% for SWIR and 7?% for TIR. The inversion can successfully separate the effects of perturbations to methane emissions and to OH concentrations. Interhemispheric differences in OH concentrations can also be successfully retrieved. Error estimates may be overoptimistic because we assume in this OSSE that errors are strictly random and have no systematic component. The availability of TROPOMI and CrIS data will soon provide an opportunity to test the method with actual observations.
机译:羟自由基(OH)是对流层的主要氧化剂,也是大气甲烷的主要汇。在过去的几十年中,使用大气甲基氯仿(CH 3 CCl 3 )来监测全球OH的丰度。随着大气中CH 3 CCl 3 浓度的降低,该方法逐渐失效。在这里,我们建议通过卫星观测短波红外(SWIR)和热红外(TIR)中的大气甲烷,可以提供一种监测全球OH浓度的替代方法。前提是,OH氧化产生的甲烷的大气特征与甲烷排放的特征不同。我们在观测系统模拟实验(OSSE)框架中使用分别代表TROPOMI和CrIS仪器的合成SWIR和TIR卫星观测评估了该方法。通过贝叶斯逆分析对合成观测值进行解释,从而优化了网格化甲烷排放量和全球OH浓度。通过分析来完成优化,以提供完整的误差统计,包括后排放与OH浓度之间的误差相关性。使用来自ACCMIP档案库中12个不同模型的OH字段检查了3-D季节性OH分布中先前错误引起的潜在偏差。我们发现,对甲烷的卫星观测有可能以优于1%的精度和SWIR约3%的精度以及TIR约7%的精度来约束全球对流层OH浓度。反演可以成功地将扰动的影响与甲烷排放和OH浓度分开。 OH浓度的半球间差异也可以成功获得。误差估计可能过于乐观,因为我们在本OSSE中假设误差严格是随机的,没有系统性的成分。 TROPOMI和CrIS数据的可用性将很快提供一个通过实际观察来测试该方法的机会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号