首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Monitoring global tropospheric OH concentrations using satellite observations of atmospheric methane
【24h】

Monitoring global tropospheric OH concentrations using satellite observations of atmospheric methane

机译:使用大气甲烷的卫星观察监测全球对流层哦浓度

获取原文
           

摘要

The hydroxyl radical (OH) is the main tropospheric oxidant and the main sink for atmospheric methane. The global abundance of OH has been monitored for the past decades using atmospheric methyl chloroform (CH3CCl3) as a proxy. This method is becoming ineffective as atmospheric CH3CCl3 concentrations decline. Here we propose that satellite observations of atmospheric methane in the short-wave infrared (SWIR) and thermal infrared (TIR) can provide an alternative method for monitoring global OH concentrations. The premise is that the atmospheric signature of the methane sink from oxidation by OH is distinct from that of methane emissions. We evaluate this method in an observing system simulation experiment (OSSE) framework using synthetic SWIR and TIR satellite observations representative of the TROPOMI and CrIS instruments, respectively. The synthetic observations are interpreted with a Bayesian inverse analysis, optimizing both gridded methane emissions and global OH concentrations. The optimization is done analytically to provide complete error accounting, including error correlations between posterior emissions and OH concentrations. The potential bias caused by prior errors in the 3-D seasonal OH distribution is examined using OH fields from 12 different models in the ACCMIP archive. We find that the satellite observations of methane have the potential to constrain the global tropospheric OH concentration with a precision better than 1% and an accuracy of about 3% for SWIR and 7% for TIR. The inversion can successfully separate the effects of perturbations to methane emissions and to OH concentrations. Interhemispheric differences in OH concentrations can also be successfully retrieved. Error estimates may be overoptimistic because we assume in this OSSE that errors are strictly random and have no systematic component. The availability of TROPOMI and CrIS data will soon provide an opportunity to test the method with actual observations.
机译:羟基自由基(OH)是主要的对流层氧化剂和大气甲烷的主水槽。使用大气甲基氯仿(CH3CCL3)作为代理的过去几十年来监测全球哦的全球丰富。这种方法随着大气CH3CCL3浓度的下降而变得无效。在这里,我们提出了短波红外(SWIR)和热红外(TIR)中大气甲烷的卫星观察可以提供用于监测全局恒浓度的替代方法。前提是甲烷沉积物从氧化的大气签名哦不同于甲烷排放。我们分别在观察系统仿真实验(OSSE)框架中,分别评估了这种方法,分别使用综合苏里尔和TIR卫星观测分别代表Tropomi和Cric Instruments。合成观察被贝叶斯逆分析解释,优化了覆盖着甲烷排放和全局恒浓度。在分析上进行优化以提供完整的错误核算,包括后排放和浓度之间的误差相关性。在ACCMIP存档中的12个不​​同模型中使用OH字段检查由3-D季节性OH分布中的先前错误引起的潜在偏差。我们发现甲烷的卫星观察可能有可能将全球对流层OH浓度约束,精度优于1%,矫正率约为3%的精度,对于TIR为7%。倒置可以成功地将扰动的影响与甲烷排放和OH浓度分开。也可以成功检索OH浓度的互脱差异。错误估计可能过度优化,因为我们在此OSSE中假设错误是严格随机的,并且没有系统组件。卓越和克里斯数据的可用性很快就会有机会用实际观测测试方法。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号