...
首页> 外文期刊>Atmospheric chemistry and physics >Climate impact on airborne particulate matter concentrations in California using seven year analysis periods
【24h】

Climate impact on airborne particulate matter concentrations in California using seven year analysis periods

机译:使用七年分析期,气候对加利福尼亚州空气中颗粒物浓度的影响

获取原文
   

获取外文期刊封面封底 >>

       

摘要

The effect of global climate change on the annual average concentration offine particulate matter (PM2.5) in California was studied using aclimate-air quality modeling system composed of global through regionalmodels. Output from the NCAR/DOE Parallel Climate Model (PCM) generatedunder the "business as usual" global emissions scenario was downscaledusing the Weather Research and Forecasting (WRF) model followed by airquality simulations using the UCD/CIT airshed model. The system representsmajor atmospheric processes acting on gas and particle phase speciesincluding meteorological effects on emissions, advection, dispersion,chemical reaction rates, gas-particle conversion, and dry/wet deposition.The air quality simulations were carried out for the entire state ofCalifornia with a resolution of 8-km for the years 2000–2006 (present climatewith present emissions) and 2047–2053 (future climate with present emissions).Each of these 7-year analysis periods was analyzed using a total of 1008simulated days to span a climatologically relevant time period with apractical computational burden. The 7-year windows were chosen to properlyaccount for annual variability with the added benefit that the air qualitypredictions under the present climate could be compared to actualmeasurements. The climate-air quality modeling system successfullypredicted the spatial pattern of present climate PM2.5 concentrationsin California but the absolute magnitude of the annual average PM2.5concentrations were under-predicted by ~4–39% in the major airbasins. The majority of this under-prediction was caused by excessventilation predicted by PCM-WRF that should be present to the same degreein the current and future time periods so that the net bias introduced intothe comparison is minimized.Surface temperature, relative humidity (RH), rain rate, and wind speed werepredicted to increase in the future climate while the ultra violet (UV)radiation was predicted to decrease in major urban areas in the San JoaquinValley (SJV) and South Coast Air Basin (SoCAB). These changes lead to apredicted decrease in PM2.5 mass concentrations of ~0.3–0.7 μg m?3 in the southern portion of the SJV and~0.3–1.1 μg m?3 along coastal regions of California including the heavily populatedSan Francisco Bay Area and the SoCAB surrounding Los Angeles. Annual averagePM2.5 concentrations were predicted to increase at certain locationswithin the SJV and the Sacramento Valley (SV) due to the effects of climatechange, but a corresponding analysis of the annual variability showed thatthese predictions are not statistically significant (i.e. the choice of adifferent 7-year period could produce a different outcome for theseregions). Overall, virtually no region in California outside of coastal + central Los Angeles, and a small region around the port of Oakland in theSan Francisco Bay Area experienced a statistically significant change inannual average PM2.5 concentrations due to the effects of climatechange in the present~study.The present study employs the highest spatial resolution (8 km) and thelongest analysis windows (7 years) of any climate-air quality analysisconducted for California to date, but the results still have some degree ofuncertainty. Most significantly, GCM calculations have inherent uncertaintythat is not fully represented in the current study since a single GCM wasused as the starting point for all calculations. The PCM results used in thecurrent study predicted greater wintertime increases in air temperature overthe Pacific Ocean than over land, further motivating comparison to other GCMresults. Ensembles of GCM results are usually employed to build confidencein climate calculations. The current results provide a first data-point forthe climate-air quality analysis that simultaneously employ the fine spatial resolution and long time scales needed to capture the behavior
机译:利用由区域模型组成的全球气候空气质量模型系统,研究了全球气候变化对加州细颗粒物年平均浓度(PM 2.5 )的影响。在“照常营业”的全球排放情景下,NCAR / DOE平行气候模型(PCM)的输出已使用天气研究和预报(WRF)模型进行了缩减,随后使用UCD / CIT气域模型进行了空气质量模拟。该系统代表了作用于气相和颗粒相物种的主要大气过程,包括对排放,对流,弥散,化学反应速率,气体-颗粒转化和干/湿沉降的气象影响。对加利福尼亚州的整个州进行了空气质量模拟。 2000-2006年(当前气候下有当前排放量)和2047-2053年(未来气候下有当前排放量)的8 km分辨率。使用总共1008个模拟天来分析这7年的每个分析期间,具有实际计算负担的时间段。选择7年的窗口来适当地考虑年度变化,其附加好处是可以将当前气候下的空气质量预测与实际测量进行比较。气候空气质量建模系统成功地预测了加利福尼亚州当前气候PM 2.5 浓度的空间格局,但年平均PM 2.5 浓度的绝对量却被低估了〜4 –39%的主要飞机场。这种低估的主要原因是PCM-WRF预测的过度通风,在当前和将来的时间段内应以相同的程度出现这种过度通风,以使引入比较的净偏差最小。 表面温度,在未来的气候中,相对湿度(RH),降雨速率和风速预计会增加,而圣华金山谷(SJV)和南海岸空气盆地(SoCAB)的主要城市地区的紫外线(UV)辐射预计会减少。 。这些变化导致SJV南部PM 2.5 的质量浓度预计降低〜0.3–0.7μgm ?3 ,而〜0.3–1.1μgm 3 在加利福尼亚沿海地区,包括人口稠密的旧金山湾区和洛杉矶周围的SoCAB。由于气候变化的影响,在SJV和萨克拉曼多河谷(SV)内的某些位置,年平均PM 2.5 浓度预计会增加,但是对年度变异性的相应分析表明,这些预测在统计上不显着(也就是说,对于这些地区,选择不同的7年期限可能会产生不同的结果。总体而言,由于上述影响,加州几乎没有沿海和洛杉矶中部以外的地区,以及旧金山湾区奥克兰港附近的一小区域,年平均PM 2.5 浓度发生了统计学上的显着变化 本研究采用迄今为止加利福尼亚进行的所有气候-空气质量分析中的最高空间分辨率(8 km)和最长分析窗口(7年)。有一定程度的不确定性。最重要的是,由于单个GCM被用作所有计算的起点,因此GCM计算具有固有的不确定性,在当前的研究中并未完全体现出来。当前研究中使用的PCM结果预测,冬季太平洋上的气温升高幅度要高于陆地上的气温升高幅度,这进一步促使与其他GCM结果进行比较。通常使用GCM结果集来建立对气候计算的信心。目前的结果为气候空气质量分析提供了第一个数据点,该数据点同时采用了捕获行为所需的精细空间分辨率和长时间尺度

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号