...
首页> 外文期刊>Atmospheric chemistry and physics >Global soil consumption of atmospheric carbon monoxide: an analysis using a process-based biogeochemistry model
【24h】

Global soil consumption of atmospheric carbon monoxide: an analysis using a process-based biogeochemistry model

机译:大气中一氧化碳的全球土壤消耗:使用基于过程的生物地球化学模型进行的分析

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Carbon monoxide (CO) plays an important role in controlling the oxidizing capacity of the atmosphere by reacting with OH radicals that affect atmospheric methane (CHsub4/sub) dynamics. We develop a process-based biogeochemistry model to quantify the CO exchange between soils and the atmosphere with a 5?min internal time step at the global scale. The model is parameterized using the CO flux data from the field and laboratory experiments for 11 representative ecosystem types. The model is then extrapolated to global terrestrial ecosystems using monthly climate forcing data. Global soil gross consumption, gross production, and net flux of the atmospheric CO are estimated to be from ?197 to ?180, 34 to 36, and ?163 to ?145?Tg?CO?yrsup?1/sup (1?Tg = 10sup12/sup?g), respectively, when the model is driven with satellite-based atmospheric CO concentration data during 2000–2013. Tropical evergreen forest, savanna and deciduous forest areas are the largest sinks at 123?Tg?CO?yrsup?1/sup. The soil CO gross consumption is sensitive to air temperature and atmospheric CO concentration, while the gross production is sensitive to soil organic carbon (SOC) stock and air temperature. By assuming that the spatially distributed atmospheric CO concentrations (?~ 128?ppbv) are not changing over time, the global mean CO net deposition velocity is estimated to be 0.16–0.19?mm?ssup?1/sup during the 20th century. Under the future climate scenarios, the CO deposition velocity will increase at a rate of 0.0002–0.0013?mm?ssup?1/sup?yrsup?1/sup during 2014–2100, reaching 0.20–0.30?mm?ssup?1/sup by the end of the 21st century, primarily due to the increasing temperature. Areas near the Equator, the eastern US, Europe and eastern Asia will be the largest sinks due to optimum soil moisture and high temperature. The annual global soil net flux of atmospheric CO is primarily controlled by air temperature, soil temperature, SOC and atmospheric CO concentrations, while its monthly variation is mainly determined by air temperature, precipitation, soil temperature and soil moisture.
机译:一氧化碳(CO)通过与影响大气甲烷(CH 4 )动力学的OH自由基反应,在控制大气的氧化能力中发挥重要作用。我们开发了一个基于过程的生物地球化学模型,以在全球范围内以5分钟的内部时间步长来量化土壤与大气之间的一氧化碳交换。使用来自野外的CO通量数据和针对11种代表性生态系统类型的实验室实验对模型进行参数化。然后使用月度气候强迫数据将模型外推到全球陆地生态系统。全球土壤总消费,总产量和大气CO的净通量估计为?197至?180、34至36和?163至?145?Tg?CO?yr ?1 (1?Tg = 10 12 ?g),分别在2000–2013年期间使用基于卫星的大气CO浓度数据驱动该模型时。热带常绿森林,稀树草原和落叶林面积最大,为123?Tg?CO?yr ?1 。土壤一氧化碳总消耗量对气温和大气中一氧化碳浓度敏感,而总生产量对土壤有机碳(SOC)存量和气温敏感。通过假设空间分布的大气中CO浓度(?〜128?ppbv)不会随时间变化,估计全球CO平均净沉积速度为0.16-0.19?mm?s ?1 。 20世纪。在未来的气候情景下,2014年至2100年间,CO沉积速度将以0.0002–0.0013?mm?s ?1 ?yr ?1 的速率增加,达到0.20到21世纪末,温度降低了–0.30?mm?s ?1 。由于最佳的土壤湿度和高温,赤道附近,美国东部,欧洲和东亚地区将是最大的汇。大气CO的年全球土壤净通量主要受气温,土壤温度,SOC和大气CO浓度的控制,而其每月变化主要由气温,降水,土壤温度和土壤湿度决定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号