首页> 外文期刊>Atmospheric chemistry and physics >Greenhouse gas simulations with a coupled meteorological and transport model: the predictability of COsub2/sub
【24h】

Greenhouse gas simulations with a coupled meteorological and transport model: the predictability of COsub2/sub

机译:结合气象和运输模型的温室气体模拟:CO 2 的可预测性

获取原文
           

摘要

A new model for greenhouse gas transport has been developed based on Environment and Climate Change Canada's operational weather and environmental prediction models. When provided with realistic posterior fluxes for COsub2/sub, the COsub2/sub simulations compare well to NOAA's CarbonTracker fields and to near-surface continuous measurements, columns from the Total Carbon Column Observing Network (TCCON) and NOAA aircraft profiles. This coupled meteorological and tracer transport model is used to study the predictability of COsub2/sub. Predictability concerns the quantification of model forecast errors and thus of transport model errors. COsub2/sub predictions are used to compute model–data mismatches when solving flux inversion problems and the quality of such predictions is a major concern. Here, the loss of meteorological predictability due to uncertain meteorological initial conditions is shown to impact COsub2/sub predictability. The predictability of COsub2/sub is shorter than that of the temperature field and increases near the surface and in the lower stratosphere. When broken down into spatial scales, COsub2/sub predictability at the very largest scales is mainly due to surface fluxes but there is also some sensitivity to the land and ocean surface forcing of meteorological fields. The predictability due to the land and ocean surface is most evident in boreal summer when biospheric uptake produces large spatial gradients in the COsub2/sub field. This is a newly identified source of uncertainty in COsub2/sub predictions but it is expected to be much less significant than uncertainties in fluxes. However, it serves as an upper limit for the more important source of transport error and loss of predictability, which is due to uncertain meteorological analyses. By isolating this component of transport error, it is demonstrated that COsub2/sub can only be defined on large spatial scales due to the presence of meteorological uncertainty. Thus, for a given model, there is a spatial scale below which fluxes cannot be inferred simply due to the fact that meteorological analyses are imperfect. These unresolved spatial scales correspond to small scales near the surface but increase with altitude. By isolating other components of transport error, the largest or limiting error can be identified. For example, a model error due to the lack of convective tracer transport was found to impact transport error on the very largest (wavenumbers less than 5) spatial scales. Thus for wavenumbers greater than 5, transport model error due to meteorological analysis uncertainty is more important for our model than the lack of convective tracer transport.
机译:根据加拿大环境与气候变化的运行天气和环境预测模型,开发了一种新的温室气体运输模型。当为CO 2 提供现实的后通量时,CO 2 模拟与NOAA的CarbonTracker场以及近地表连续测量(总碳柱观测网络中的柱)进行了比较(TCCON)和NOAA飞机资料。利用气象和示踪的耦合运移模型研究了CO 2 的可预测性。可预测性涉及模型预测误差的量化,因此也涉及运输模型误差的量化。在解决通量反演问题时,CO 2 预测用于计算模型与数据的不匹配,而这种预测的质量是一个主要问题。在此,由于不确定的气象初始条件而导致的气象可预测性的损失表明会影响CO 2 的可预测性。 CO 2 的可预测性比温度场的可预测性要短,并且在地表附近和平流层下部会增加。当细分为空间尺度时,CO 2 在最大尺度上的可预测性主要是由于地表通量,但对气象领域的陆地和海洋表面强迫也有一定的敏感性。在北半球夏季,当CO 2 场中生物圈的吸收产生较大的空间梯度时,陆地和海洋表面的可预测性最为明显。这是在CO 2 预测中新发现的不确定性来源,但预计它的重要性不如通量不确定性。然而,由于不确定的气象分析,它成为更重要的运输错误和可预测性损失的上限。通过隔离运输误差的这一成分,证明了由于气象不确定性的存在,CO 2 只能在较大的空间尺度上定义。因此,对于给定的模型,存在一个空间尺度,在该尺度下,不能简单地由于气象分析不完善而推断出通量。这些未解析的空间比例尺对应于地表附近的小比例尺,但随高度增加。通过隔离运输错误的其他成分,可以确定最大或限制错误。例如,发现由于缺乏对流示踪剂传输而导致的模型误差会在最大(波数小于5)空间尺度上影响传输误差。因此,对于大于5的波数,由于缺乏对流示踪剂传输,由于气象分析不确定性而引起的传输模型误差对我们的模型更为重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号