...
首页> 外文期刊>Aquatic Microbial Ecology >Responsibility of microzooplankton and parasite pressure for the demise of toxic dinoflagellate blooms
【24h】

Responsibility of microzooplankton and parasite pressure for the demise of toxic dinoflagellate blooms

机译:微带藻浮游生物和寄生虫压力对有毒鞭毛藻灭绝的责任

获取原文
   

获取外文期刊封面封底 >>

       

摘要

ABSTRACT: Two mechanisms proposed to control dinoflagellate blooms—parasitism by eukaryotes (e.g. Amoebophrya sp.) and grazing by microzooplankton—have been explored through previous laboratory and field studies but lack quantitative assessment. We modelled the relative effect of these mechanisms. We used literature values to embed an Anderson-May host-microparasite model into a microbial food web model (nano- and microphytoplankton, nano- and microzooplankton, a toxic dinoflagellate, a dinoflagellate parasite). Three scenarios were examined to simulate the introduction of a toxic dinoflagellate and its parasite into an environment: (1) a food web, including autotrophic nano- and microplankton, heterotrophic flagellates, and ciliates; (2) as for Case 1 but with a toxic dinoflagellate; (3) as for Case 2 but with a dinoparasite. This mimics observations in a French estuary, where a toxic dinoflagellate began blooming in 1988; since 1998, blooms appear to have become regulated, and numerous parasitic infections by Amoebophrya sp. occurred from 2004 to 2006. After supporting parasite control of dinoflagellate blooms, we assessed the effects of observed ranges of key variables associated with the parasite and other components of the food web on parasite control of the dinoflagellate population. Population dynamics were examined over 50 d. In Case 1, all taxa had 10 to 20 d blooms. In Case 2, the toxic dinoflagellate population dynamics mimicked that of the microphytoplankton, and this dinoflagellate was reduced in numbers but not extirpated by microzooplankton grazing. In Case 3 population blooms occurred, and the parasite virtually eliminated the dinoflagellate over ~10 d. Sensitivity analysis indicated that our assessment was robust. We propose that the decline in toxic dinoflagellates in the French estuary may have been due to an introduced dinoparasite. In general, we suggest that parasites may have greater impact on toxic dinoflagellate blooms than microzooplankton grazers; the parasites have the potential to eliminate the toxic dinoflagellates. We recommend that such parasites be incorporated into more complex food web models.
机译:摘要:通过先前的实验室和田间研究已经探索出了两种控制鞭毛藻繁殖的机制-真核生物(如 Amoebophrya sp。)的寄生和微带菌的放牧-但缺乏定量评估。我们模拟了这些机制的相对作用。我们使用文献价值将安德森·梅宿主微寄生物模型嵌入到微生物食物网模型中(纳米浮游植物和微浮游植物,纳米浮游动物和微浮游动物,有毒的鞭毛虫,鞭毛的寄生虫)。研究了三种情况,以模拟有毒的鞭毛藻及其寄生虫向环境的引入:(1)食物网,包括自养纳米浮游生物和微浮游生物,异养鞭毛和纤毛虫; (2)与情况1相同,但具有有毒的鞭毛甲藻酸盐; (3)和情况2一样,但有寄生虫。这模仿了法国河口的观测结果,1988年,有毒的鞭毛藻开始开花。自1998年以来,水华似乎已受到控制, Amoebophrya sp。感染了许多寄生虫。发生于2004年至2006年。在支持对鞭毛鞭毛的寄生虫控制后,我们评估了与寄生虫和食物网其他成分相关的关键变量的观测范围对鞭毛鞭毛种群的寄生虫控制的影响。在50天内检查了种群动态。在案例1中,所有分类单元都有10到20 d绽放。在案例2中,有毒的鞭毛藻种群动态模仿了浮游植物的微藻,这种鞭毛藻的数量减少了,但没有被微浮游动物放牧而灭绝。在案例3中,发生了种群绽放,并且在约10 d内,寄生虫几乎消除了鞭毛藻。敏感性分析表明我们的评估是可靠的。我们认为,法国河口有毒鞭毛藻的减少可能是由于引入了寄生虫。一般而言,我们建议寄生虫可能比微带藻浮游生物对有毒的鞭毛藻有更大的影响。寄生虫具有消除有毒的鞭毛藻的潜力。我们建议将此类寄生虫纳入更复杂的食物网络模型中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号