首页> 外文期刊>ACS Central Science >Aspartyl Oxidation Catalysts That Dial In Functional Group Selectivity, along with Regio- and Stereoselectivity
【24h】

Aspartyl Oxidation Catalysts That Dial In Functional Group Selectivity, along with Regio- and Stereoselectivity

机译:引入功能基团选择性以及区域和立体选择性的天冬氨酰氧化催化剂

获取原文
           

摘要

A remarkable aspect of enzyme evolution is the portability of catalytic mechanisms for fundamentally different chemical reactions. For example, aspartyl proteases, which contain two active site carboxylic acid groups, catalyze the hydrolysis of amide bonds, while glycosyltransferases (and glycosyl hydrolases), which often also contain two active site carboxylates, have evolved to form (or break) glycosidic bonds. However, neither catalyst exhibits cross-reactivity in the intracellular environment. The large, macromolecular architectures of these biocatalysts tailor their active sites to their precise, divergent functions. The analogous portability of a small-molecule catalyst for truly orthogonal chemical reactivity is rare. Herein, we report aspartic acid containing peptides that can be directed to different sectors of a substrate for which the danger of cross-reactivity looms large. A transiently formed aspartyl peracid catalyst can participate either as an electrophilic oxidant to catalyze alkene epoxidation or as a nucleophilic oxidant to mediate the Baeyer–Villiger oxidation (BVO) of ketones. We show in this study that an appended peptide sequence can dictate the mode of reactivity for this conserved catalytic functional group within a substrate that has the potential to undergo both alkene epoxidation and BVO; in both cases the additional aspects of chemical selectivity (regio- and stereoselectivity) are high. This sequence-dependent tuning of a common catalytic moiety for functional group selective reactions constitutes a biomimetic strategy that may impact late-stage diversification of complex polyfunctional molecules.
机译:酶进化的显着方面是根本不同的化学反应的催化机制的可移植性。例如,含有两个活性位点羧酸基团的天冬氨酰蛋白酶催化酰胺键的水解,而通常也含有两个活性位点羧酸盐的糖基转移酶(和糖基水解酶)已经进化形成(或破坏)糖苷键。但是,两种催化剂在细胞内环境中均不表现出交叉反应性。这些生物催化剂的大分子结构使其活性位点适应其精确的发散功能。小分子催化剂对于真正正交化学反应性的类似可携带性很少见。在本文中,我们报道了含有天冬氨酸的肽,这些肽可被定向到交叉反应的危险隐患很大的底物的不同区域。瞬时形成的天冬氨酰过酸催化剂可以作为亲电子氧化剂参与催化烯烃的环氧化反应,也可以作为亲核氧化剂参与介导酮的拜耳-维利格氧化(BVO)。我们在这项研究中表明,附加的肽序列可以决定底物中该保守催化官能团的反应模式,该底物可能同时经历烯烃环氧化和BVO。在这两种情况下,化学选择性(区域和立体选择性)的其他方面都很高。对官能团选择性反应的共同催化部分的依赖序列的调节构成了仿生策略,该策略可能会影响复杂多官能分子的后期多样化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号