首页> 外文期刊>ACS Central Science >Interplay of Homogeneous Reactions, Mass Transport, and Kinetics in Determining Selectivity of the Reduction of CO2 on Gold Electrodes
【24h】

Interplay of Homogeneous Reactions, Mass Transport, and Kinetics in Determining Selectivity of the Reduction of CO2 on Gold Electrodes

机译:均相反应,质量输运和动力学相互作用确定金电极上CO2还原的选择性

获取原文
获取外文期刊封面目录资料

摘要

Gold electrocatalysts have been a research focus due to their ability to reduce CO2 into CO, a feedstock for further conversion. Many methods have been employed to modulate CO2 reduction (CDR) vs hydrogen evolution reaction (HER) selectivity on gold electrodes such as nano-/mesostructuring and crystal faceting control. Herein we show that gold surfaces with very different morphologies (planar, leaves, and wires) lead to similar bell-shaped CO faradaic efficiency as a function of applied potential. At low overpotential (E ?0.85 V vs standard hydrogen electrode (SHE)), HER is dominant via a potential quasi-independent rate that we attribute to a rate limiting process of surface dissociation of competent proton donors. As overpotential is increased, CO faradaic efficiency reaches a maximal value (near 90%) because CO production is controlled by an electron transfer rate that increases with potential, whereas HER remains almost potential independent. At high overpotential (E ?1.2 V vs SHE), CO faradaic efficiency decreases due to the concurrent rise of HER via bicarbonate direct reduction and leveling off of CDR as CO2 replenishment at the catalyst surface is limited by mass transport and homogeneous coupled reactions. Importantly, the analysis shows that recent attempts to overcome mass transport limitations with gas diffusion electrodes confront low carbon mass balance owing to the prominence of homogeneous reactions coupled to CDR. The comprehensive kinetics analysis of the factors defining CDR vs HER on gold electrodes developed here provides an activation-driving force relationship over a large potential window and informs on the design of conditions to achieve desirable high current densities for CO2 to CO conversion while maintaining high selectivity.
机译:金电催化剂由于能够将CO2还原为CO(进一步转化的原料)而成为研究重点。已经采用了许多方法来调节金电极上的CO2还原(CDR)与析氢反应(HER)选择性,例如纳米/介晶结构和晶体刻面控制。本文中,我们显示了具有非常不同的形态(平面,叶子和金属丝)的金表面会导致类似的钟形CO法拉第效率,这是施加电势的函数。在低的超电势下(相对于标准氢电极(SHE),E> 0.85 V),HER通过准准电势占主导地位,这归因于合格质子供体表面解离的速率限制过程。随着过电势的增加,CO法拉第效率达到最大值(接近90%),因为CO的产生受电子传输速率的控制,而电子传输速率随电势的增加而HER几乎不受电势的影响。在高过电势下(E <1.2 V vs SHE),CO法拉第效率下降是由于HER通过碳酸氢盐直接还原并同时使CDR稳定而使HER同时升高,因为催化剂表面的CO2补充量受到传质和均相偶联反应的限制。重要的是,分析表明,由于与CDR偶联的均相反应的突出,最近用气体扩散电极克服传质限制的尝试面临着低碳质量平衡。对在此开发的金电极上定义CDR vs HER的因素进行全面的动力学分析,可在较大的电位窗口上提供活化驱动力关系,并告知条件设计以实现所需的高电流密度,以实现从CO2到CO的转化,同时保持高选择性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号