...
首页> 外文期刊>AIP Advances >Acceptor-modulated optical enhancements and band-gap narrowing in ZnO thin films
【24h】

Acceptor-modulated optical enhancements and band-gap narrowing in ZnO thin films

机译:ZnO薄膜中受主调制的光学增强和带隙变窄

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Fermi-Dirac distribution for doped semiconductors and Burstein-Moss effect have been correlated first time to figure out the conductivity type of ZnO. Hall Effect in the Van der Pauw configuration has been applied to reconcile our theoretical estimations which evince our assumption. Band-gap narrowing has been found in all p-type samples, whereas blue Burstein-Moss shift has been recorded in the n-type films. Atomic Force Microscopic (AFM) analysis shows that both p-type and n-type films have almost same granular-like structure with minor change in average grain size (~ 6 nm to 10 nm) and surface roughness rms value 3 nm for thickness ~315 nm which points that grain size and surface roughness did not play any significant role in order to modulate the conductivity type of ZnO. X-ray diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Photoelectron Spectroscopy (XPS) have been employed to perform the structural, chemical and elemental analysis. Hexagonal wurtzite structure has been observed in all samples. The introduction of nitrogen reduces the crystallinity of host lattice. 97% transmittance in the visible range with 1.4 × 107 Ω-1cm-1 optical conductivity have been detected. High absorption value in the ultra-violet (UV) region reveals that NZOs thin films can be used to fabricate next-generation high-performance UV detectors.
机译:首次将掺杂半导体的费米-狄拉克分布与Burstein-Moss效应相关联,以得出ZnO的导电类型。 Van der Pauw配置中的霍尔效应已被用来调和我们的理论估计,这符合我们的假设。在所有p型样品中都发现了带隙变窄,而在n型膜中记录了蓝色的Burstein-Moss位移。原子力显微镜(AFM)分析表明,p型和n型膜都具有几乎相同的颗粒状结构,平均粒径(〜6 nm至10 nm)变化很小,厚度〜的表面粗糙度rms值为3 nm。 315nm表明晶粒尺寸和表面粗糙度对于调节ZnO的导电类型没有任何重要作用。 X射线衍射(XRD),能量色散X射线光谱法(EDS)和X射线光电子能谱(XPS)已被用于进行结构,化学和元素分析。在所有样品中均观察到六方纤锌矿结构。氮的引入降低了主晶格的结晶度。在1.4×10 7 Ω -1 cm -1 光电导率的可见光范围内,检测到97%的透光率。紫外线(UV)区域的高吸收值表明,NZO薄膜可用于制造下一代高性能UV检测器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号