...
首页> 外文期刊>AIP Advances >Evolution of structural topology of forming nanocrystalline silicon film by atomic-scale-mechanism-driven model based on realistic network
【24h】

Evolution of structural topology of forming nanocrystalline silicon film by atomic-scale-mechanism-driven model based on realistic network

机译:基于现实网络的原子尺度驱动模型形成纳米晶硅膜的结构拓扑演变

获取原文
           

摘要

To establish a description of realistic structural evolution of a growth film, we propose a local definite continuous-random-network (CRN) structure combined with a kinetic Monte Carlo (KMC) method based on an atomic-scale mechanism from first-principles density-functional-theory computations and molecular-dynamics computations. The proposed CRN-KMC method elucidates the evolution of elaborate topological structure and the transformation from amorphous phase to nanocrystalline phase of Si films, which is essentially attributed to the atomic interactive behavior of film growth. The method further predicts the realistic structural networks of a growing film at various temperatures based on various atomic-scale mechanisms competing with each other, mechanisms that not only essentially drive the radical from physisorption to chemisorption with the film surface, but also decidedly influence the film-surface chemical composition. In particular, we find the evolution of topological structure’s critical dependence on the compositions of the film surface and H-induced crystallization mechanism, which provide the important information for the strategy for determining optimized deposition conditions for local crystal formation. The results of the evolution of the structural network indicate that the structure of film is similar the CRN model’s representation at relative lower temperature, and is in full agreement with the inhomogeneous crystalline model at relative higher temperature without an abrupt phase change from polycrystalline to amorphous. Our CRN-KMC realistic structure model has significance for exploring the relation of various atomic-scale mechanisms to the phase transformation of growing films.
机译:为了建立生长膜的真实结构演化的描述,我们提出了一种基于第一原理密度-原子级机理的局部定域连续随机网络(CRN)结构与动力学蒙特卡洛(KMC)方法相结合的方法。功能理论计算和分子动力学计算。提出的CRN-KMC方法阐明了Si薄膜精细拓扑结构的演变以及从非晶相到纳米晶相的转变,这主要归因于膜生长的原子相互作用行为。该方法还基于彼此竞争的各种原子尺度机制,进一步预测了在各种温度下生长的薄膜的实际结构网络,这些机制不仅实质上驱动自由基从薄膜表面的物理吸附转变为化学吸附,而且还决定性地影响薄膜-表面化学组成。特别是,我们发现拓扑结构对薄膜表面组成和H诱导结晶机制的关键依赖性的演变,这为确定局部晶体形成的最佳沉积条件的策略提供了重要信息。结构网络演化的结果表明,在相对较低的温度下,薄膜的结构类似于CRN模型的表示,并且在相对较高的温度下,与不均匀的晶体模型完全吻合,而不会发生从多晶到非晶的突然相变。我们的CRN-KMC现实结构模型对于探索各种原子尺度机制与生长膜的相变之间的关系具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号