...
首页> 外文期刊>ACS Omega >Direct Deposition of Amorphous Cobalt–Vanadium Mixed Oxide Films for Electrocatalytic Water Oxidation
【24h】

Direct Deposition of Amorphous Cobalt–Vanadium Mixed Oxide Films for Electrocatalytic Water Oxidation

机译:直接沉积非晶态钴钒混合氧化物膜用于电催化水氧化

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Efficiency of water oxidation catalysts in terms of overpotential, current density, and voltage stability over time with facile methods of their fabrication remains a key challenge in developing competent mechanisms of storing energy in the form of green hydrogen fuels. In this work, a rapid one-step aerosol-assisted chemical vapor deposition (AACVD) method is employed to synthesize amorphous and highly active cobalt–vanadium mixed oxide catalysts (CoVOx) directly over fluorine-doped tin oxide (FTO) substrates. Morphological and structural characterizations made by field emission scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy techniques revealed the formation of pure-phase amorphous films with a gradual variation of topography as a function of deposition time. Of these films, the most active film (CoVOx-20) was obtained in 20 min deposition, showing a spongy networking of interwoven nanofibers with a homogeneous distribution of 3–4 nm pores, achieving an overpotential of 308 mV at 10 mA/cm2 current density. A much higher current density of 175 mA/cm2 could be achieved just at 380 mV of overpotential with Tafel slope as low as 62 mV/dec for this whole range while exhibiting long-term stability. Mass activity, electrochemical impedance spectroscopy data, and the estimation of electrochemically active surface area all endorsed this high catalytic performance of CoVOx-20, which is unprecedented for a low-cost, upscalable, and relatively less conductive substrate such as FTO used here. Our findings, thus, not only highlight the benefits of using AACVD in preparing two-dimensional amorphous catalysts but also prove the high efficiency of CoVOx materials thus obtained, as outlined in a plausible reaction mechanism.
机译:利用易于制造的方法,水氧化催化剂在过电位,电流密度和随时间变化的电压稳定性方面的效率,仍然是开发以绿色氢燃料形式储存能量的有效机制的关键挑战。在这项工作中,采用一种快速的一步式气溶胶辅助化学气相沉积(AACVD)方法,直接在掺氟氧化锡(FTO)衬底上合成了非晶态和高活性钴-钒混合氧化物催化剂(CoVOx)。通过场发射扫描电子显微镜,X射线衍射,能量色散X射线光谱学和X射线光电子能谱技术进行的形态和结构表征揭示了纯相非晶膜的形成,其形貌随功能逐渐变化沉积时间。在这些薄膜中,最活跃的薄膜(CoVOx-20)在20分钟的沉积过程中获得,显示出交织的纳米纤维海绵状网状结构,具有均匀分布的3-4 nm孔隙,在10 mA / cm2电流下的过电位为308 mV密度。仅在380 mV的过电位下,Tafel斜率在整个范围内低至62 mV / dec,就可以实现更高的电流密度175 mA / cm2,同时具有长期稳定性。质量活性,电化学阻抗谱数据以及对电化学活性表面积的估计都支持了CoVOx-20的这种高催化性能,这对于低成本,可升级且导电性相对较低的基材(如此处使用的FTO)而言是空前的。因此,我们的发现不仅凸显了使用AACVD制备二维无定形催化剂的好处,而且证明了如此获得的CoVOx材料的高效率,如合理的反应机理所概述。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号