...
首页> 外文期刊>ACS Omega >New Insights into the Pt-Catalyzed CH3OH Oxidation Mechanism: First-Principle Considerations on Thermodynamics, Kinetics, and Reversible Potentials
【24h】

New Insights into the Pt-Catalyzed CH3OH Oxidation Mechanism: First-Principle Considerations on Thermodynamics, Kinetics, and Reversible Potentials

机译:Pt催化CH 3 OH氧化机理的新见解:热力学,动力学和可逆势的第一性考虑

获取原文

摘要

A systematic first-principle study of CH_(3)OH oxidation along indirect and direct pathways on Pt(111) has been carried out, and some new insights into CH_(3)OH oxidation pathways in direct CH_(3)OH fuel cells (DMFCs) are presented. The thermodynamics, kinetics, and reversible potentials for all possible elementary steps, initializing with C–H, O–H, and C–O bond cleavages and proceeding via sequential decomposition and oxidation from the reaction intermediates, are analyzed. Some key reactive intermediates are identified. By comparing the activation energies and reversible potentials of various possible elementary reaction steps, we can speculate that the initial CH_(3)OH oxidation step proceeds by the CH_(3)O intermediate under a nonelectrochemical environment, whereas it prefers to occur by the CH_(2)OH intermediate under electrochemical environment. Furthermore, CHO hydroxylation into HCOOH along a direct pathway is more facile to occur than CHO dehydrogenation into CO along an indirect pathway at the nonelectrochemical interface, whereas the indirect and direct pathways may be parallel pathways on Pt(111) under the present simulated electrochemical environment. Simultaneously, CH_(3) can be easily formed through C–O bond cleavage in CH_(3)OH, which is a nonelectrochemical step. Thus, the CH_(x ) (x = 0–3) species is possibly formed on Pt(111) during CH_(3)OH oxidation regardless of being under an electrochemical or nonelectrochemical environment. The adsorbed CH_(x ) species will result in the blocking of the active sites and the prevention of further CH_(3)OH oxidation. Our present findings on the formation of carbonaceous deposits on Pt(111) are consistent with the experimentally observed C–O bond scission of CH_(3)OH into CH_(x ) species. Thus, we propose that the adsorbed residues that poisoned the Pt surface and impeded the performance of DMFCs may be CH_(x ) species, rather than CO species, since the direct pathway is more favorable on Pt(111) at the nonelectrochemical interface. However, the poisonous species that occupied the active sites of the Pt surface may be CH_(x ) and CO species due to the simultaneous occurrence of oxidation pathways on Pt(111) under the present simulated electrochemical environment. Based on the present study, some new insights into CH_(3)OH oxidation mechanisms and designing strategies of Pt-based alloy catalysts for CH_(3)OH oxidation can be provided.
机译:已对沿Pt(111)上间接和直接途径的CH_(3)OH氧化进行了系统的第一性原理研究,并且对直接CH_(3)OH燃料电池中的CH_(3)OH氧化途径有一些新见解( DMFCs)。分析了所有可能的基本步骤的热力学,动力学和可逆电势,这些步骤以C–H,OH–和C–O键裂解开始,并通过顺序分解和反应中间体的氧化进行。确定了一些关键的反应中间体。通过比较各种可能的基本反应步骤的活化能和可逆电位,我们可以推测出初始的CH_(3)OH氧化步骤是在非电化学环境下由CH_(3)O中间体进行的,而它更倾向于由CH_发生(2)电化学环境下的OH中间体。此外,在非电化学界面上,沿着直接途径的CHO羟基化成HCOOH比沿着沿着间接途径的CHO脱氢成CO更容易发生,而在当前模拟的电化学环境下,间接和直接途径可能是Pt(111)上的平行途径。 。同时,通过CH_(3)OH中的C–O键断裂,可以轻松形成CH_(3),这是一个非电化学步骤。因此,无论在电化学或非电化学环境下,CH_(3)OH氧化过程中都可能在Pt(111)上形成CH_(x)(x = 0-3)物质。吸附的CH_(x)物质将导致活性位点的封闭,并阻止进一步的CH_(3)OH氧化。我们目前对Pt(111)上碳质沉积物形成的发现与实验观察到的CH_(3)OH的CH键断裂导致CH_(ix)物种一致。因此,我们认为,使Pt中毒并阻碍DMFC性能的吸附残留物可能是CH _( x)物种,而不是CO物种,因为在非电化学状态下直接途径对Pt(111)更为有利接口。然而,由于在当前模拟的电化学环境下在Pt(111)上同时发生氧化途径,所以占据Pt表面的活性位点的有毒物质可能是CH_(x)和CO物质。在本研究的基础上,可以为CH_(3)OH的氧化机理和Pt基合金催化剂的CH_(3)OH氧化提供一些新的见解。

著录项

  • 来源
    《ACS Omega》 |2018年第1期|共12页
  • 作者

    Lihui Ou;

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号