...
首页> 外文期刊>ACS Omega >Realization of Tunable Localized Surface Plasmon Resonance of [email?protected]2O Core–Shell Nanoparticles by the Pulse Laser Deposition Method
【24h】

Realization of Tunable Localized Surface Plasmon Resonance of [email?protected]2O Core–Shell Nanoparticles by the Pulse Laser Deposition Method

机译:通过脉冲激光沉积法实现[电子邮件保护的] 2O核壳纳米粒子的可调谐局部等离激元共振

获取原文

摘要

Cu@Cu2O core–shell nanoparticles (NPs) not only possess a stabilized structure but also exhibit better photocatalytic performance as compared to pure Cu2O. Therefore, preparation of Cu@Cu2O core–shell NPs is key toward efficient photocatalysis applications. In this paper, the fabrication of Cu@Cu2O core–shell NPs on single-crystal MgO(100) substrates has been studied systematically by pulse laser deposition. Scanning electron microscopy (SEM) images show that the average diameter of NPs is enlarged from 89.9 to 150.3 nm with the increasing of oxygen pressure. Transmission electron microscopy (TEM) images indicate that the NPs have elongated hexagons and a core–shell structure with a shell thickness of about 10 nm. UV–vis absorption spectra show that the position of the localized surface plasmon resonance (LSPR) peaks shifts from 648 to 858 nm and the full width at half-maximum (fwhm) of the LSPR peaks broadens from 226.7 to 436.5 nm with increasing average diameter of NPs. According to the analysis, the red shift of the LSPR peaks is caused by enlargement of the core diameter; higher fwhm is a result of broadened particle size distribution and the elongated morphology of NPs. Therefore, the width and range of LSPR peaks of the absorption spectrum can be tuned using this method, which is beneficial for enhancing the light absorption and improving the photocatalytic efficiency of Cu@Cu2O core–shell NPs.
机译:与纯Cu2O相比,Cu @ Cu2O核壳纳米粒子(NPs)不仅具有稳定的结构,而且还具有更好的光催化性能。因此,制备Cu @ Cu2O核壳NPs是高效光催化应用的关键。在本文中,已通过脉冲激光沉积系统研究了在单晶MgO(100)衬底上制备Cu @ Cu2O核壳NP。扫描电子显微镜(SEM)图像显示,随着氧气压力的增加,NPs的平均直径从89.9 nm扩大到150.3 nm。透射电子显微镜(TEM)图像表明NP具有细长的六边形和核壳结构,壳厚度约为10 nm。紫外可见吸收光谱显示,局部表面等离子体共振(LSPR)峰的位置从648 nm移至858 nm,并且随着平均直径的增大,LSPR峰的半峰全宽(fwhm)从226.7扩大至436.5 nm NP。根据分析,LSPR峰的红移是由于核心直径增大而引起的。较高的fwhm是颗粒尺寸分布变宽和NPs形态延长的结果。因此,可以使用这种方法调整吸收光谱的LSPR峰的宽度和范围,这对于增强光吸收和提高Cu @ Cu2O核壳NP的光催化效率是有益的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号