...
首页> 外文期刊>Current Plant Biology >Truly quantitative analysis of the firefly luciferase complementation assay ☆
【24h】

Truly quantitative analysis of the firefly luciferase complementation assay ☆

机译:萤火虫荧光素酶互补测定的真实定量分析☆

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Highlights ? Luciferase complementation assays (LCAs) detect protein interactions within cells. ? A mathematical model of the firefly LCA was constructed. ? The firefly LCA is qualitative but not quantitative. Abstract Luciferase complementation assays detect protein-protein interactions within living cells using bioluminescence. Since the first report using plant cells was published in 2007, over 100 peer-reviewed articles have been published describing the detection of protein-protein interactions within plant cells by the assays. The assays have also been used to analyze networks of protein-protein interactions in plants. Although the assays have a high dynamic range, they remain qualitative with respect to determining the affinities of interactions. In this article, we first summarize the luciferase complementation assays developed in the past years. We then describe the mechanism of the firefly luciferase complementation that is most widely used in plants, and the reason it is qualitative rather than quantitative using a mathematical model. Finally, we discuss possible procedures to quantitatively determine the affinity of a protein pair using the firefly luciferase complementation assay. Keywords Luciferase complementation ; Protein–protein interactions ; Quantitative assay ; Mathematical model ; Plant cells ; In vitro ; In cellulo ; In vivo prs.rt("abs_end"); 1. Luciferase complementation assays and their use for the network analysis of protein–protein interactions in animal cells Luciferase complementation assays (LCAs) detect protein–protein interactions within living cells using bioluminescence. In the assays, complementary DNA (cDNA) of luciferase is first split into the N- and C- terminal fragments and then fused to cDNAs of a protein pair of interest. A cell of interest is transformed or transfected with the resulting recombinant cDNAs so that a pair of the recombinant proteins is expressed within the cell. When the recombinant proteins interact with each other, the enzymatic activity of split luciferase is reconstituted. Compared with other assays that detect protein–protein interaction in living cells, these assays have a high dynamic range of interaction signals due to extremely low background signals in the samples [1] . Accordingly, LCAs are suitable to conduct high-throughput screening in which high degrees of differentiation between a positive and negative signal is required. The research group of Umezawa first published the principle of the LCA using luciferase obtained from fireflies ( Photinus pyralis ) in 2001 [2] . In the publication, insulin dose-dependent interactions of phosphorylated insulin receptor substrate 1 (IRS-1) and the N-terminal SH2 domain of PI 3-kinase in living Chinese hamster ovary (CHO) cells was described. As the assay was further modified, the research group of Jacob published the network analysis of protein–protein interactions in Human Embryonic Kidney 293 (HEK 293) cells with LCA using luciferase from copepod ( Gaussia princeps ) in 2012 [3] . The analyzed proteins are composed of a total of 2167 viral and human protein pairs. To identify the interacting protein pairs, they first benchmarked the assay using 100 randomly selected protein pairs for the negative result, and 143 protein pairs known to interact for the positive [4] . The detected luminescence was normalized by dividing the luminescence of a tested protein pair by the luminescence measured in control experiments. In the control experiments, they measured the luminescence emitted by the random interactions of the N- and C- fragments of luciferase. Frequency distributions for the normalized luminescence of positive and negative protein pairs were used to determine the threshold luminescence for an interacting protein pair. 2. Use of luciferase complementation assays for the network analysis of protein–protein interactions in plant cells We published the application of LCA in Arabidopsis protoplasts, for the first time, to detect the interaction of a histone protein pair using luciferase from sea pansy ( Renilla reniformis ) in 2007 [5] . We further published the network analysis of protein–protein interactions in Arabidopsis protoplasts using the same LCA in 2010 [6] . The analyzed proteins in the network are composed of 38 pairs of SNAREs (soluble N -ethylmaleimide-sensitive factor attachment protein). To identify the interacting protein pairs, we benchmarked the assay by comparing the previously published results of co-immunoprecipitation assays. Eleven negative protein pairs and 8 positive protein pairs identified using co-immunoprecipitation assays were compared to the LCA results [6] . The luminescence detected in the LCA was normalized by dividing the luminescence by the luminescence emitted by luciferase activity from the click beetle ( Pyrophorus plagiophthalamus ) that depends on the transformation efficiency of the cells. Distributions for the normalized luminescence values for the positiv
机译:强调 ?萤光素酶互补测定法(LCA)检测细胞内的蛋白质相互作用。 ?建立了萤火虫LCA的数学模型。 ?萤火虫LCA是定性的,而不是定量的。摘要萤光素酶互补检测可利用生物发光检测活细胞内的蛋白质-蛋白质相互作用。自2007年发表第一份使用植物细胞的报告以来,已经发表了100多篇同行评议的文章,描述了通过该检测方法检测植物细胞内蛋白质-蛋白质相互作用的方法。该测定法也已经用于分析植物中蛋白质-蛋白质相互作用的网络。尽管这些测定法具有很高的动态范围,但它们在确定相互作用亲和力方面仍保持定性。在本文中,我们首先总结了过去几年开发的荧光素酶互补检测方法。然后,我们描述了萤火虫荧光素酶互补机制,该机制在植物中使用最为广泛,并使用数学模型对其进行了定性而非定量分析。最后,我们讨论了使用萤火虫荧光素酶互补测定法定量确定蛋白质对亲和力的可能程序。关键词荧光素酶互补;蛋白质间相互作用;定量分析;数学模型 ;植物细胞 ;体外 ;在大提琴中;体内prs.rt(“ abs_end”); 1.萤光素酶互补测定及其在动物细胞中蛋白质-蛋白质相互作用的网络分析中的应用萤光素酶互补测定(LCA)利用生物发光检测活细胞内的蛋白质-蛋白质相互作用。在测定中,萤光素酶的互补DNA(cDNA)首先被分成N和C末端片段,然后融合到目标蛋白对的cDNA。用所得重组cDNA转化或转染目的细胞,以便在细胞内表达一对重组蛋白。当重组蛋白彼此相互作用时,分裂的萤光素酶的酶活性被重建。与检测活细胞中蛋白质相互作用的其他测定法相比,这些测定法具有高动态范围的相互作用信号,因为样品中的背景信号极低[1]。因此,LCA适用于进行高通量筛选,其中需要在正信号和负信号之间进行高度区分。梅泽(Umezawa)研究小组于2001年首次发表了使用从萤火虫(Photinus pyralis)获得的萤光素酶的LCA原理[2]。在该出版物中,描述了中国仓鼠卵巢(CHO)细胞中磷酸化胰岛素受体底物1(IRS-1)和PI 3-激酶N末端SH2结构域的胰岛素剂量依赖性相互作用。随着测定方法的进一步改进,雅各布研究小组于2012年发表了使用co足类(Gaussia princeps)的荧光素酶对人胚肾293(HEK 293)细胞与LCA进行蛋白质-蛋白质相互作用的网络分析[3]。分析的蛋白质由总共2167个病毒和人类蛋白质对组成。为了鉴定相互作用的蛋白对,他们首先使用100个随机选择的蛋白对作为阴性结果,并对143个已知为阳性的蛋白对进行了基准分析[4]。通过将测试蛋白质对的发光除以对照实验中测得的发光来对检测到的发光进行归一化。在对照实验中,他们测量了萤光素酶N和C片段的随机相互作用所发出的发光。正和负蛋白对的归一化发光的频率分布用于确定相互作用蛋白对的阈值发光。 2.荧光素酶互补测定法在植物细胞中蛋白质间相互作用的网络分析中的应用我们首次发表了LCA在拟南芥原生质体中的应用,以检测来自三色堇(Renilla)的荧光素酶对组蛋白的相互作用。 reniformis)在2007年[5]。我们在2010年进一步发表了使用相同LCA的拟南芥原生质体中蛋白质间相互作用的网络分析[6]。网络中分析的蛋白质由38对SNARE(可溶性N-乙基马来酰亚胺敏感因子附着蛋白)组成。为了鉴定相互作用的蛋白质对,我们通过比较先前发表的共免疫沉淀试验结果对试验进行了基准测试。使用共免疫沉淀测定法鉴定的11个阴性蛋白对和8个阳性蛋白对与LCA结果进行了比较[6]。通过将发光除以由点击甲虫(Pyrophorus plagiophthalamus)产生的萤光素酶活性发出的发光来对LCA中检测到的发光进行归一化,这取决于细胞的转化效率。正值的归一化发光值的分布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号