首页> 外文期刊>Computation >Schr?dinger Theory of Electrons in Electromagnetic Fields: New Perspectives
【24h】

Schr?dinger Theory of Electrons in Electromagnetic Fields: New Perspectives

机译:电子在电场中的薛定er理论:新观点

获取原文
获取外文期刊封面目录资料

摘要

The Schr?dinger theory of electrons in an external electromagnetic field is described from the new perspective of the individual electron. The perspective is arrived at via the time-dependent “Quantal Newtonian” law (or differential virial theorem). (The time-independent law, a special case, provides a similar description of stationary-state theory). These laws are in terms of “classical” fields whose sources are quantal expectations of Hermitian operators taken with respect to the wave function. The laws reveal the following physics: (a) in addition to the external field, each electron experiences an internal field whose components are representative of a specific property of the system such as the correlations due to the Pauli exclusion principle and Coulomb repulsion, the electron density, kinetic effects, and an internal magnetic field component. The response of the electron is described by the current density field; (b) the scalar potential energy of an electron is the work done in a conservative field. It is thus path-independent. The conservative field is the sum of the internal and Lorentz fields. Hence, the potential is inherently related to the properties of the system, and its constituent property-related components known. As the sources of the fields are functionals of the wave function, so are the respective fields, and, therefore, the scalar potential is a known functional of the wave function; (c) as such, the system Hamiltonian is a known functional of the wave function. This reveals the intrinsic self-consistent nature of the Schr?dinger equation, thereby providing a path for the determination of the exact wave functions and energies of the system; (d) with the Schr?dinger equation written in self-consistent form, the Hamiltonian now admits via the Lorentz field a new term that explicitly involves the external magnetic field. The new understandings are explicated for the stationary state case by application to two quantum dots in a magnetostatic field, one in a ground state and the other in an excited state. For the time-dependent case, the evolution of the same states of the quantum dots in both a magnetostatic and a time-dependent electric field is described. In each case, the satisfaction of the corresponding “Quantal Newtonian” law is demonstrated.
机译:从单个电子的新观点描述了外部电磁场中电子的薛定er理论。通过与时间有关的“量子牛顿”定律(或微分维里定理)得出透视图。 (与时间无关的定律是一个特例,它提供了对稳态理论的类似描述)。这些定律是根据“经典”场而言的,这些场的源是关于波函数的埃尔米特算子的量化期望。这些定律揭示了以下物理原理:(a)除外部场外,每个电子还经历一个内部场,该场的成分代表系统的特定性质,例如由于保利排斥原理和库仑斥力引起的相关性,电子密度,动力学效应和内部磁场分量。电子的响应由电流密度场描述; (b)电子的标量势能是在保守领域所做的功。因此,它与路径无关。保守字段是内部字段和洛伦兹字段的总和。因此,电势与系统的属性和与之构成属性相关的组件固有地相关。由于场的源是波动函数的函数,因此各个场也是如此,因此,标量势是波动函数的已知函数;因此,标量势是波动函数的函数。 (c)同样,系统哈密顿量是波动函数的已知函数。这揭示了薛定er方程的内在自洽性,从而为确定系统的精确波动函数和能量提供了一条路径。 (d)用自洽形式写的薛定er方程,哈密顿量现在通过洛伦兹场接受一个明确涉及外部磁场的新术语。通过对静磁场中的两个量子点(一个处于基态而另一个处于激发态)的应用,对稳态情况进行了新的阐述。对于时间相关的情况,描述了在静磁场和时间相关的电场中量子点相同状态的演化。在每种情况下,都证明了对相应“量子牛顿”定律的满足。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号