...
首页> 外文期刊>Chemical science >Dynamic, structural and thermodynamic basis of insulin-like growth factor 1 kinase allostery mediated by activation loop phosphorylation
【24h】

Dynamic, structural and thermodynamic basis of insulin-like growth factor 1 kinase allostery mediated by activation loop phosphorylation

机译:激活环磷酸化介导的胰岛素样生长因子1激酶变构的动态,结构和热力学基础

获取原文
           

摘要

Despite the importance of kinases' catalytic activity regulation in cell signaling, detailed mechanisms underlying their activity regulation are poorly understood. Herein, using insulin-like growth factor 1 receptor kinase (IGF-1RK) as a model, the mechanisms of kinase regulation by its activation loop (A-loop) phosphorylation were investigated through molecular dynamics (MD) and alchemical free energy simulations. Analyses of the simulation results and free energy landscapes determined for the entire catalytic cycle of the kinase revealed that A-loop phosphorylation affects each step in the IGF-1RK catalytic cycle, including conformational change, substrate binding/product release and catalytic phosphoryl transfer. Specifically, the conformational equilibrium of the kinase is shifted by 13.2 kcal mol?1 to favor the active conformation after A-loop phosphorylation, which increases substrate binding affinity of the activated kinase. This free energy shift is achieved primarily via destabilization of the inactive conformation. The free energy of the catalytic reaction is also changed by 3.3 kcal mol?1 after the phosphorylation and in the end, facilitates product release. Analyses of MD simulations showed that A-loop phosphorylation produces these energetic effects by perturbing the side chain interactions around each A-loop tyrosine. These interaction changes are propagated to the remainder of the kinase to modify the orientations and dynamics of the αC-helix and A-loop, and together yield the observed free energy changes. Since many protein kinases share similar interactions identified in this work, the mechanisms of kinase allostery and catalysis unraveled here can be applicable to them.
机译:尽管激酶的催化活性调节在细胞信号传导中很重要,但对其活性调节基础的详细机制知之甚少。本文中,以胰岛素样生长因子1受体激酶(IGF-1RK)为模型,通过分子动力学(MD)和炼金术自由能模拟研究了其激活环(A-loop)磷酸化引起的激酶调节机制。对激酶整个催化循环的模拟结果和自由能态的分析表明,A环磷酸化会影响IGF-1RK催化循环的每个步骤,包括构象变化,底物结合/产物释放和催化磷酸基转移。具体而言,激酶的构象平衡发生了13.2 kcal mol ?1 的偏移,有利于A环磷酸化后的活性构象,从而增加了活化激酶的底物结合亲和力。这种自由能转移主要是通过使非活性构象不稳定来实现的。磷酸化后,催化反应的自由能也改变了3.3 kcal mol ?1 ,最终促进了产物的释放。 MD模拟的分析表明,A环磷酸化会干扰每个A环酪氨酸周围的侧链相互作用,从而产生这些能量效应。这些相互作用的变化传播到激酶的其余部分,以修饰αC螺旋和A环的方向和动力学,并共同产生观察到的自由能变化。由于许多蛋白激酶在这项工作中鉴定出相似的相互作用,因此此处未阐明的激酶变构和催化机制可能适用于它们。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号