...
首页> 外文期刊>Chemical science >What is the trigger mechanism for the reversal of electron flow in oxygen-tolerant [NiFe] hydrogenases?
【24h】

What is the trigger mechanism for the reversal of electron flow in oxygen-tolerant [NiFe] hydrogenases?

机译:耐氧[NiFe]氢化酶中电子流逆转的触发机制是什么?

获取原文
           

摘要

The [NiFe] hydrogenases use an electron transfer relay of three FeS clusters – proximal, medial and distal – to release the electrons from the principal reaction, H2 → 2H+ + 2e?, that occurs at the Ni–Fe catalytic site. This site is normally inactivated by O2, but the subclass of O2-tolerant [NiFe] hydrogenases are able to counter this inactivation through the agency of an unusual and unprecedented proximal cluster, with composition [Fe4S3(Scys)6], that is able to transfer two electrons back to the Ni–Fe site and effect crucial reduction of O2-derived species and thereby reactivate the Ni–Fe site. This proximal cluster gates both the direction and the number of electrons flowing through it, and can reverse the normal flow during O2 attack. The unusual structures and redox potentials of the proximal cluster are known: a structural change in the proximal cluster causes changes in its electron-transfer potentials. Using protein structure analysis and density functional simulations, this paper identifies a closed protonic system comprising the proximal cluster, some contiguous residues, and a proton reservoir, and proposes that it is activated by O2-induced conformational change at the Ni–Fe site. This change is linked to a key histidine residue which then causes protonation of the proximal cluster, and migration of this proton to a key μ3-S atom. The resulting SH group causes the required structural change at the proximal cluster, modifying its redox potentials, and leads to the reversed electron flow back to the Ni–Fe site. This cycle is reversible, and the protons involved are independent of those used or produced in reactions at the active site. Existing experimental support for this model is cited, and new testing experiments are suggested.
机译:[NiFe]氢化酶使用三个FeS簇(近端,中间和远端)的电子转移中继来释放主要反应中的电子H 2 →2H + + 2e ,发生在Ni-Fe催化位点。该位点通常被O 2 灭活,但是耐O 2 的[NiFe]氢化酶的亚类是能够通过不寻常且前所未有的近端簇(组成为[Fe 4 S 3 (S cys 6 ],能够将两个电子转移回Ni-Fe位置并有效地减少了源自O 2 的物种,从而重新激活了Ni-Fe位。这个近端簇既控制了流经它的方向又限制了电子的流向,并且可以在O 2 攻击期间逆转正常流。近端簇的异常结构和氧化还原电势是已知的:近端簇的结构变化引起其电子转移势的变化。通过蛋白质结构分析和密度泛函模拟,本文确定了一个封闭的质子系统,该系统由近端簇,一些连续的残基和一个质子储层组成,并提出被O 2 < / small>引起的Ni-Fe位置构象变化。此变化与关键的组氨酸残基相关,然后该残基导致近端簇的质子化,并且该质子迁移到关键的μ 3 -S原子。产生的SH基团导致近端簇发生所需的结构变化,改变了其氧化还原电位,并导致电子反向流回Ni-Fe部位。该循环是可逆的,所涉及的质子与活性位点反应中使用或产生的质子无关。引用了对该模型的现有实验支持,并提出了新的测试实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号