首页> 美国卫生研究院文献>Chemical Science >What is the trigger mechanism for the reversal of electron flow in oxygen-tolerant NiFe hydrogenases?
【2h】

What is the trigger mechanism for the reversal of electron flow in oxygen-tolerant NiFe hydrogenases?

机译:耐氧NiFe氢化酶中电子流逆转的触发机制是什么?

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The [NiFe] hydrogenases use an electron transfer relay of three FeS clusters – proximal, medial and distal – to release the electrons from the principal reaction, H2 → 2H+ + 2e, that occurs at the Ni–Fe catalytic site. This site is normally inactivated by O2, but the subclass of O2-tolerant [NiFe] hydrogenases are able to counter this inactivation through the agency of an unusual and unprecedented proximal cluster, with composition [Fe4S3(Scys)6], that is able to transfer two electrons back to the Ni–Fe site and effect crucial reduction of O2-derived species and thereby reactivate the Ni–Fe site. This proximal cluster gates both the direction and the number of electrons flowing through it, and can reverse the normal flow during O2 attack. The unusual structures and redox potentials of the proximal cluster are known: a structural change in the proximal cluster causes changes in its electron-transfer potentials. Using protein structure analysis and density functional simulations, this paper identifies a closed protonic system comprising the proximal cluster, some contiguous residues, and a proton reservoir, and proposes that it is activated by O2-induced conformational change at the Ni–Fe site. This change is linked to a key histidine residue which then causes protonation of the proximal cluster, and migration of this proton to a key μ3-S atom. The resulting SH group causes the required structural change at the proximal cluster, modifying its redox potentials, and leads to the reversed electron flow back to the Ni–Fe site. This cycle is reversible, and the protons involved are independent of those used or produced in reactions at the active site. Existing experimental support for this model is cited, and new testing experiments are suggested.
机译:[NiFe]氢化酶使用三个FeS簇(近端,中间和远端)的电子转移中继来释放主要反应中的电子H2→2H + + 2e ,发生在Ni-Fe催化位点。该位点通常被O2灭活,但是耐O2的[NiFe]氢化酶亚类能够通过异常且空前的近端簇(组成为[Fe4S3(S cys )6],能够将两个电子转移回Ni-Fe位置,并实现O2衍生物种的关键还原,从而重新激活Ni-Fe位置。这个近端簇既控制了流经它的电子的方向,又限制了流经它的电子数量,并且可以在O2攻击期间逆转正常流动。近端簇的异常结构和氧化还原电势是已知的:近端簇的结构变化导致其电子转移势的变化。利用蛋白质结构分析和密度泛函模拟,本文确定了一个封闭的质子系统,该系统包括近端簇,一些连续的残基和一个质子储层,并提出被O2诱导的Ni-Fe构象变化激活。该变化与关键的组氨酸残基相关,该残基随后导致近端簇的质子化,并使该质子迁移至关键的μ3-S原子。产生的SH基团引起近端簇处所需的结构变化,改变其氧化还原电位,并导致反向电子流回到Ni-Fe部位。该循环是可逆的,所涉及的质子与活性位点反应中使用或产生的质子无关。引用了对该模型的现有实验支持,并提出了新的测试实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号