...
首页> 外文期刊>Chemical science >A deep neural network model for packing density predictions and its application in the study of 1.5 million organic molecules
【24h】

A deep neural network model for packing density predictions and its application in the study of 1.5 million organic molecules

机译:用于堆积密度预测的深度神经网络模型及其在150万有机分子研究中的应用

获取原文
           

摘要

The process of developing new compounds and materials is increasingly driven by computational modeling and simulation, which allow us to characterize candidates before pursuing them in the laboratory. One of the non-trivial properties of interest for organic materials is their packing in the bulk, which is highly dependent on their molecular structure. By controlling the latter, we can realize materials with a desired density (as well as other target properties). Molecular dynamics simulations are a popular and reasonably accurate way to compute the bulk density of molecules, however, since these calculations are computationally intensive, they are not a practically viable option for high-throughput screening studies that assess material candidates on a massive scale. In this work, we employ machine learning to develop a data-derived prediction model that is an alternative to physics-based simulations, and we utilize it for the hyperscreening of 1.5 million small organic molecules as well as to gain insights into the relationship between structural makeup and packing density. We also use this study to analyze the learning curve of the employed neural network approach and gain empirical data on the dependence of model performance and training data size, which will inform future investigations.
机译:计算模型和仿真越来越多地驱动开发新化合物和材料的过程,这使我们能够在实验室进行研究之前表征候选对象。有机材料感兴趣的重要特性之一是它们在堆积物中的堆积,这很大程度上取决于它们的分子结构。通过控制后者,我们可以实现具有所需密度(以及其他目标特性)的材料。分子动力学模拟是一种计算分子的堆积密度的流行且相当准确的方法,但是,由于这些计算的计算量很大,因此对于大规模评估材料候选物的高通量筛选研究而言,它们并不是可行的选择。在这项工作中,我们使用机器学习来开发基于数据的预测模型,该模型可以替代基于物理的模拟,并且可以将其用于150万个有机小分子的超筛查,并深入了解结构之间的关系。化妆品和包装密度。我们还使用这项研究来分析所采用的神经网络方法的学习曲线,并获得依赖于模型性能和训练数据大小的经验数据,这将为将来的研究提供参考。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号