首页> 外文期刊>Catalysts >Time- and Temperature-Varying Activation Energies: Isobutane Selective Oxidation to Methacrolein over Phosphomolybdic Acid and Copper(II) Phosphomolybdates
【24h】

Time- and Temperature-Varying Activation Energies: Isobutane Selective Oxidation to Methacrolein over Phosphomolybdic Acid and Copper(II) Phosphomolybdates

机译:随时间和温度变化的活化能:异丁烷在磷钼酸和磷钼酸铜(II)上选择性氧化为甲基丙烯醛

获取原文
           

摘要

The selective oxidation energetics of isobutane to methacrolein over phosphomolybdic acid and copper(II) phosphomolybdates have been investigated using low-pressure, pseudo-steady-state and temperature-programming techniques. Time-varying flexible least squares methods were used to determine variations in oxidation activation energies as the temperature increases at 5 °C·min ?1 . Catalyst activity stabilizes by the fourth consecutive temperature-programmed run. Rate parameters increase linearly with temperature in two sinusoidal, oscillating wave packets. For H 3 PMo 12 O 40 , three distinct reaction pathways are apparent in the fourth run with activation energies 76 ± 3, 93 ± 7 and 130 ± 3 kJ·mol ?1 , and under these experimental conditions are observed at the optimum temperatures 704 ± 7 K, 667 ± 25 K and 745 ± 7 K, respectively. Over the copper-containing catalysts, two pathways are apparent: 76 ± 3 kJ·mol ?1 at 665 ± 9 K and 130 ± 3 kJ·mol ?1 at 706 ± 9 K. The three activation energies indicate either different reaction pathways leading to methacrolein or distinct active sites on the catalyst surface. The intermediate activation energy, 93 kJ·mol ?1 , only observed over phosphomolybdic acid, may be linked to hydrogen bonding. Differences in optimum temperatures for the same activation energies for H 3 PMO 12 O 40 and for the copper catalysts indicate that compensating entropy changes are smaller over H 3 PMo 12 O 40 . The inclusion of copper enhances catalyst stability and activity.
机译:使用低压,拟稳态和程序升温技术研究了异丁烷在磷钼酸和磷钼酸铜(II)上向甲基丙烯醛的选择性氧化能。使用随时间变化的柔性最小二乘法来确定随着温度在5°C·min?1下的升高,氧化活化能的变化。催化剂活性通过第四次连续的程序升温稳定下来。在两个正弦振荡波包中,速率参数随温度线性增加。对于H 3 PMo 12 O 40,在第四轮中,活化能为76±3、93±7和130±3 kJ·mol?1时,三个明显的反应途径是显而易见的,并且在这些实验条件下,最佳温度为704。分别为±7 K,667±25 K和745±7K。在含铜催化剂上,有两个明显的路径:在665±9 K时为76±3 kJ·molα1和在706±9 K时为130±3 kJ·molα1。这三种活化能表明,两种不同的反应路径导致异丁烯醛或催化剂表面上不同的活性位点。只能在磷钼酸上观察到的中间活化能93 kJ·mol?1可以与氢键相连。对于H 3 PMO 12 O 40和铜催化剂,对于相同的活化能,最佳温度的差异表明,补偿熵的变化小于H 3 PMo 12 O 40。铜的加入增强了催化剂的稳定性和活性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号