首页> 外文期刊>Biogeosciences >A data-model fusion approach for upscaling gross ecosystem productivity to the landscape scale based on remote sensing and flux footprint modelling
【24h】

A data-model fusion approach for upscaling gross ecosystem productivity to the landscape scale based on remote sensing and flux footprint modelling

机译:一种数据模型融合方法,用于基于遥感和通量足迹模型将生态系统总生产力提升到景观尺度

获取原文
       

摘要

In order to use the global available eddy-covariance (EC) fluxdataset and remote-sensing measurements to provide estimates ofgross primary productivity (GPP) at landscape(101–102 km2), regional(103–106 km2) and global land surface scales, wedeveloped a satellite-based GPP algorithm using LANDSAT data and anupscaling framework. The satellite-based GPP algorithm uses twoimproved vegetation indices (Enhanced Vegetation Index – EVI, LandSurface Water Index – LSWI). The upscalling framework involves fluxfootprint climatology modelling and data-model fusion. This approachwas first applied to an evergreen coniferous stand in thesubtropical monsoon climatic zone of south China. The ECmeasurements at Qian Yan Zhou tower site (26°44′48" N,115°04′13" E), which belongs to the China flux networkand the LANDSAT and MODIS imagery data for this region in 2004 wereused in this study. A consecutive series of LANDSAT-like images ofthe surface reflectance at an 8-day interval were predicted byblending the LANDSAT and MODIS images using an existing algorithm(ESTARFM: Enhanced Spatial and Temporal Adaptive Reflectance FusionModel). The seasonal dynamics of GPP were then predicted by thesatellite-based algorithm. MODIS products explained 60% of observedvariations of GPP and underestimated the measured annual GPP(= 1879 g C m?2) by 25–30%; while the satellite-basedalgorithm with default static parameters explained 88% of observedvariations of GPP but overestimated GPP during the growing seasonalby about 20–25%. The optimization of the satellite-based algorithmusing a data-model fusion technique with the assistance of EC fluxtower footprint modelling reduced the biases in daily GPPestimations from about 2.24 g C m?2 day?1(non-optimized, ~43.5% of mean measured daily value) to1.18 g C m?2 day?1 (optimized, ~22.9% of meanmeasured daily value). The remotely sensed GPP using the optimizedalgorithm can explain 92% of the seasonal variations of EC observedGPP. These results demonstrated the potential combination of thesatellite-based algorithm, flux footprint modelling and data-modelfusion for improving the accuracy of landscape/regional GPPestimation, a key component for the study of the carbon cycle.
机译:为了使用全局可用的涡动协方差(EC)通量数据集和遥感测量值来提供景观(10 1 –10 2 km 2 ),区域(10 3 –10 6 km 2 )和全球陆地尺度,我们开发了使用LANDSAT数据和扩展框架的基于卫星的GPP算法。基于卫星的GPP算法使用两个改进的植被指数(增强植被指数– EVI,土地表面水指数– LSWI)。升级框架涉及流量足迹气候学建模和数据模型融合。该方法首次应用于中国南方亚热带季风气候区的常绿针叶林。本文采用属于中国通量网络的钱岩洲塔楼遗址(26°44′48“ N,115°04'13” E)的EC测度,并采用2004年该地区的LANDSAT和MODIS影像数据。通过使用现有算法(ESTARFM:增强的时空自适应反射融合模型)将LANDSAT和MODIS图像融合,可以预测以8天为间隔的一系列连续的类似LANDSAT的图像。然后通过基于卫星的算法来预测GPP的季节动态。 MODIS产品解释了观测到的GPP差异的60%,而将测得的年度GPP(= 1879 g C m ?2 )低估了25-30%;带有默认静态参数的基于卫星的算法解释了GPP观测到的88%的变化,但在季节性增长期间高估了GPP约20-25%。使用数据模型融合技术并借助EC流量塔足迹建模对基于卫星的算法进行优化,将每日GPP估算中的偏差从大约2.24 g C m ?2 day ?1 < / sup>(未优化,约为每日平均测量值的43.5%)至1.18 g C m ?2 day ?1 (已优化,约为〜22.9%的平均值)每日价值)。使用优化算法的遥感GPP可以解释92%的EC观测到的GPP季节变化。这些结果表明,基于卫星的算法,通量足迹建模和数据模型融合的潜在组合可提高景观/区域GPP估计的准确性,这是研究碳循环的关键组成部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号