...
首页> 外文期刊>Biogeosciences >Meso-zooplankton structure and functioning in the western tropical South Pacific along the 20th parallel south during the OUTPACE survey (February–April 2015)
【24h】

Meso-zooplankton structure and functioning in the western tropical South Pacific along the 20th parallel south during the OUTPACE survey (February–April 2015)

机译:在OUTPACE调查(2015年2月至4月)中,热带热带南太平洋沿平行的第20个南纬中细带-浮游动物的结构和功能

获取原文
   

获取外文期刊封面封底 >>

       

摘要

The western tropical South Pacific (WTSP) is one of the most understudied oceanic regions in terms of the planktonic food web, despite supporting some of the largest tuna fisheries in the world. In this stratified oligotrophic ocean, nitrogen fixation may play an important role in supporting the plankton food web and higher trophic level production. In the austral summer (February–April) of 2015, the OUTPACE (Oligotrophy to UlTra-oligotrophy PACific Experiment) project conducted a comprehensive survey of 4000?km along 20 sup°/sup S, from New Caledonia to Tahiti, to determine the role of Nsub2/sub fixation on biogeochemical cycles and food web structure in this region. Here, we characterize the zooplankton community and plankton food web processes at 15 short-duration stations (8?h each) to describe the large-scale variability across trophic gradients from oligotrophic waters around Melanesian archipelagoes (MAs) to ultra-oligotrophic waters of the South Pacific gyre (GY). Three long-duration stations (5?days each) enabled a more detailed analysis of processes and were positioned (1)?in offshore northern waters of New Caledonia (MA), (2)?near Niue Island (MA), and (3)?in the subtropical Pacific gyre (GY) near the Cook Islands. At all stations, meso-zooplankton was sampled with a bongo net with 120 μ m mesh size to estimate abundance, biomass, community taxonomy and size structure, and size fractionated δsup15/supN . Subsequently, we estimated zooplankton carbon demand, grazing impact, excretion rates, and the contribution of diazotroph-derived nitrogen (DDN) to zooplankton biomass. The meso-zooplankton community showed a general decreasing trend in abundance and biomass from west to east, with a clear drop in the GY waters. Higher abundance and biomass corresponded to higher primary production associated with complex mesoscale circulation in the Coral Sea and between 170–180 sup°/sup W. The taxonomic structure showed a high degree of similarity in terms of species richness and abundance distribution across the whole region, with, however, a moderate difference in the GY region, where the copepod contribution to meso-zooplankton increased. The calculated ingestion and metabolic rates allowed us to estimate that the top–down (grazing) and bottom–up (excretion of nitrogen and phosphorous) impact of zooplankton on phytoplankton was potentially high. Daily grazing pressure on phytoplankton stocks was estimated to remove 19?% to 184?% of the total daily primary production and 1.5?% to 22?% of fixed Nsub2/sub . The top–down impact of meso-zooplankton was higher in the eastern part of the transect, including GY, than in the Coral Sea region and was mainly exerted on nano- and micro-phytoplankton. The regeneration of nutrients by zooplankton excretion was high, suggesting a strong contribution to regenerated production, particularly in terms of N. Daily NH 4 + excretion accounted for 14.5?% to 165?% of phytoplankton needs for N, whereas PO 4 3 - excretion accounted for only 2.8?% to 34?% of P needs. From zooplankton δsup15/supN values, we estimated that the DDN contributed to up to 67?% and 75?% to the zooplankton biomass in the western and central parts of the MA regions, respectively, but strongly decreased to an average of 22?% in the GY region and down to 7?% in the easternmost station. Thus, the highest contribution of diazotrophic microorganisms to zooplankton biomass occurred in the region of highest Nsub2/sub fixation rates and when Trichodesmium dominated the diazotrophs community (MA waters). Our estimations of the fluxes associated with zooplankton were highly variable between stations and zones but very high in most cases compared to literature data, partially due to the high contribution of small forms. The highest values encountered were found at the boundary between the oligotrophic (MA) and ultra-oligotrophic regions (GY). Within the MA zone, the high variability of the top–down and bottom–up impact was related to the high mesoscale activity in the physical environment. Estimated zooplankton respiration rates relative to primary production were among the highest cited values at similar latitudes, inducing a high contribution of migrant zooplankton respiration to carbon flux. Despite the relatively low biomass values of planktonic components in quasi-steady state, the availability of micro- and macronutrients related to physical mesoscale patterns in the waters surrounding the MA, the fueling by DDN, and the relatively high rates of plankton production and metabolism estimated during OUTPACE may explain the productive food chain ending with valuable fisheries in this region.
机译:尽管支持着世界上一些最大的金枪鱼捕捞业,但在浮游生物食物网方面,热带西部的南太平洋地区(WTSP)是最被忽视的海洋区域之一。在这个分层的贫营养海洋中,固氮可能在支持浮游生物食物网和提高营养水平方面起着重要作用。在2015年的夏季夏季(2月至4月),OUTPACE(Oligotrophy至UlTra-oligotrophy PACific实验)项目对从新喀里多尼亚到塔希提岛的20°S进行了4000?km的全面勘测,确定N 2 固定在该地区生物地球化学循环和食物网结构中的作用。在这里,我们描述了15个短时站(每个8?h)的浮游动物群落和浮游生物食物网过程,以描述从美拉尼西亚群岛(MAs)周围的贫营养水到该岛的超贫营养水的营养梯度的大规模变化。南太平洋回旋(GY)。三个长时间工位(每个工时5天)可以对过程进行更详细的分析,并且分别位于(1)位于新喀里多尼亚(MA)的北部近海水域,(2)位于纽埃岛(MA)附近和(3) )?在库克群岛附近的亚热带太平洋环流(GY)中。在所有站点,均用120μm网眼大小的邦戈网对中生浮游动物进行采样,以估计其丰度,生物量,群落分类学和大小结构以及大小分级的δ 15 N。随后,我们估算了浮游动物的碳需求,放牧影响,排泄率以及重氮营养型氮(DDN)对浮游生物量的贡献。中生-浮游动物群落从西到东呈现出丰度和生物量总体下降的趋势,GY水域明显下降。较高的丰度和生物量对应于珊瑚海中170-180 ° W之间复杂的中尺度环流相关的较高的初级生产。分类结构在物种丰富度和丰度分布方面显示出高度相似性在整个地区,但在GY地区差异不大,其中co足类对中细足类浮游生物的贡献增加。计算得出的摄入量和代谢率使我们能够估计,浮游动物对浮游植物的自上而下(放牧)和自下而上(氮和磷的排泄)影响可能很高。据估计,浮游植物种群的每日放牧压力使每日初级生产总量减少了19%至184%,而固定N 2 减少了1.5%至22%。在包括GY在内的样带东部,中小型浮游植物的自上而下的影响要比珊瑚海地区高,主要作用于纳米和微型浮游植物。浮游动物排泄物对养分的再生很高,表明对再生生产有重要贡献,特别是在氮方面。每日NH 4 +排泄占N浮游植物需求的14.5%至165%,而PO 4 3-排泄。仅占磷需求的2.8%至34%。根据浮游动物的δ 15 N值,我们估计DDN分别对马萨诸塞州西部和中部的浮游动物生物量贡献了67%和75%,但是却大大降低了在GY地区平均下降到22%,在最东端的下降到7%。因此,重氮营养微生物对浮游动物生物量的最大贡献发生在固氮率最高的N 2 区域,并且当毛线虫主导重氮营养菌群落时(MA水域)。我们对浮游动物相关通量的估计在站点和区域之间变化很大,但与文献数据相比,在大多数情况下非常高,部分原因是小形式的贡献很大。在低营养区(MA)和超营养区(GY)之间的边界处发现了遇到的最高值。在MA区域内,自上而下和自下而上影响的高变异性与物理环境中的高中尺度活动有关。相对于初级生产,浮游动物的呼吸速率估计值是在类似纬度下引用的最高值,这导致移民浮游动物的呼吸对碳通量的很大贡献。尽管处于准稳态状态的浮游生物组分的生物量值相对较低,但与MA周围水域的物理中尺度模式,DDN的加注以及浮游生物的产生和代谢率相对较高有关,微量和大量营养素的可用性仍然存在。在OUTPACE期间可能解释了该地区以珍贵渔业结尾的生产性食物链。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号