首页> 外文期刊>Biogeosciences >Large-eddy simulations of surface roughness parameter sensitivity to canopy-structure characteristics
【24h】

Large-eddy simulations of surface roughness parameter sensitivity to canopy-structure characteristics

机译:表面粗糙度参数对冠层结构特征敏感性的大涡模拟

获取原文
           

摘要

Surface roughness parameters, namely the roughness length and displacementheight, are an integral input used to model surface fluxes. However, mostmodels assume these parameters to be a fixed property of plant functionaltype and disregard the governing structural heterogeneity and dynamics. Inthis study, we use large-eddy simulations to explore, in silico, the effects ofcanopy-structure characteristics on surface roughness parameters. Weperformed a virtual experiment to test the sensitivity of resolved surfaceroughness to four axes of canopy structure: (1) leaf area index, (2) thevertical profile of leaf density, (3) canopy height, and (4) canopy gapfraction. We found roughness parameters to be highly variable, but uncoveredpositive relationships between displacement height and maximum canopyheight, aerodynamic canopy height and maximum canopy height and leaf areaindex, and eddy-penetration depth and gap fraction. We also found negativerelationships between aerodynamic canopy height and gap fraction, as well asbetween eddy-penetration depth and maximum canopy height and leaf areaindex. We generalized our model results into a virtual"biometric"parameterization that relates roughness length and displacement height tocanopy height, leaf area index, and gap fraction. Using a decade of wind andcanopy-structure observations in a site in Michigan, we tested theeffectiveness of our model-driven biometric parameterization approach inpredicting the friction velocity over heterogeneous and disturbed canopies.We compared the accuracy of these predictions with the friction-velocitypredictions obtained from the common simple approximation related to canopyheight, the values calculated with large-eddy simulations of the explicitcanopy structure as measured by airborne and ground-based lidar, two otherparameterization approaches that utilize varying canopy-structure inputs,and the annual and decadal means of the surface roughness parameters at thesite from meteorological observations. We found that the classicalrepresentation of constant roughness parameters (in space and time) as afraction of canopy height performed relatively well. Nonetheless, of theapproaches we tested, most of the empirical approaches that incorporateseasonal and interannual variation of roughness length and displacementheight as a function of the dynamics of canopy structure produced moreprecise and less biased estimates for friction velocity than models withtemporally invariable parameters.
机译:表面粗糙度参数,即粗糙度长度和位移高度,是用于模拟表面通量的积分输入。但是,大多数模型都假定这些参数是植物功能类型的固定属性,而忽略了控制结构的异质性和动力学。在这项研究中,我们使用大涡模拟在计算机上探索冠层结构特征对表面粗糙度参数的影响。我们进行了一个虚拟实验,以测试分辨的表面粗糙度对冠层结构的四个轴的敏感性:(1)叶面积指数,(2)叶密度的垂直轮廓,(3)冠层高度,以及(4)冠层间隙分数。我们发现粗糙度参数是高度可变的,但是在位移高度和最大顶篷高度,空气动力学顶篷高度和最大顶篷高度和叶面积指数以及涡流穿透深度和间隙分数之间没有发现正相关关系。我们还发现了空气动力学冠层高度与间隙分数之间,以及涡流穿透深度与最大冠层高度与叶面积指数之间的负相关关系。我们将模型结果概括为虚拟的“生物特征”参数化,该参数化将粗糙度长度和位移高度与冠层高度,叶面积指数和间隙分数相关联。通过在密歇根州的一个地点进行的十年风和冠层结构观测,我们测试了模型驱动的生物特征参数化方法预测异质和受干扰冠层的摩擦速度的有效性,并将这些预测的准确性与从中获得的摩擦速度预测进行了比较常见的与树冠高度有关的简单近似值,通过机载和地面激光雷达测量的显式树冠结构的大涡模拟计算得出的值,使用变化的树冠结构输入的其他两种参数化方法以及表面的年和年代际方法气象观测现场的粗糙度参数。我们发现,恒定粗糙度参数(在空间和时间上)作为冠层高度的分数的经典表示表现相对较好。然而,在我们测试的方法中,大多数经验方法将粗糙度长度和位移高度的季节和年际变化作为冠层结构动力学的函数,与具有临时参数的模型相比,其产生的摩擦速度估计值更加精确且偏差较小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号