...
首页> 外文期刊>Bulletin of the American Mathematical Society >The emergence of gravitational wave science: 100 years of development of mathematical theory, detectors, numerical algorithms, and data analysis tools
【24h】

The emergence of gravitational wave science: 100 years of development of mathematical theory, detectors, numerical algorithms, and data analysis tools

机译:引力波科学的出现:数学理论,检测器,数值算法和数据分析工具的100年发展

获取原文
   

获取外文期刊封面封底 >>

       

摘要

On September 14, 2015, the newly upgraded Laser Interferometer Gravitational-wave Observatory (LIGO) recorded a loud gravitational-wave (GW) signal, emitted a billion light-years away by a coalescing binary of two stellar-mass black holes. The detection was announced in February 2016, in time for the hundredth anniversary of Einstein's prediction of GWs within the theory of general relativity (GR). The signal represents the first direct detection of GWs, the first observation of a black-hole binary, and the first test of GR in its strong-field, high-velocity, nonlinear regime. In the remainder of its first observing run, LIGO observed two more signals from black-hole binaries, one moderately loud, another at the boundary of statistical significance. The detections mark the end of a decades-long quest and the beginning of GW astronomy: finally, we are able to probe the unseen, electromagnetically dark Universe by listening to it. In this article, we present a short historical overview of GW science : this young discipline combines GR, arguably the crowning achievement of classical physics, with record-setting, ultra-low-noise laser interferometry, and with some of the most powerful developments in the theory of differential geometry, partial differential equations, high-performance computation, numerical analysis, signal processing, statistical inference, and data science. Our emphasis is on the synergy between these disciplines and how mathematics, broadly understood, has historically played, and continues to play, a crucial role in the development of GW science. We focus on black holes, which are very pure mathematical solutions of Einstein's gravitational-field equations that are nevertheless realized in Nature and that provided the first observed signals.
机译:2015年9月14日,新升级的激光干涉仪引力波天文台(LIGO)记录了一个巨大的引力波(GW)信号,该信号通过两个恒星质量黑洞的合并双星发出了十亿光年远。该检测于2016年2月宣布,正好是爱因斯坦在广义相对论(GR)范围内预测GWs一百周年之际。该信号代表对GW的首次直接检测,对黑洞二进制的首次观察以及在其强场,高速,非线性状态下GR的首次测试。在第一次观察的其余部分中,LIGO从黑洞双星中观察到了另外两个信号,一个信号中等响亮,另一个在统计意义上。这些探测标志着长达数十年的探索的结束以及GW天文学的开始:最后,我们能够通过聆听探测到看不见的电磁暗宇宙。在本文中,我们简要介绍了GW科学的历史概况:这一年轻学科结合了GR(可以说是经典物理学的最高成就),创纪录的超低噪声激光干涉测量技术以及一些最有力的发展。微分几何理论,偏微分方程,高性能计算,数值分析,信号处理,统计推断和数据科学。我们的重点是这些学科之间的协同作用,以及广泛理解的数学在历史上一直并且继续在GW科学的发展中起着至关重要的作用。我们关注的是黑洞,这是爱因斯坦引力场方程的非常纯净的数学解,尽管如此,该方程仍在自然界中实现并提供了第一个观测到的信号。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号