...
首页> 外文期刊>BMC Plant Biology >Identifying new lignin bioengineering targets: 1. Monolignol-substitute impacts on lignin formation and cell wall fermentability
【24h】

Identifying new lignin bioengineering targets: 1. Monolignol-substitute impacts on lignin formation and cell wall fermentability

机译:确定新的木质素生物工程目标:1.单木酚替代物对木质素形成和细胞壁发酵能力的影响

获取原文

摘要

Background Recent discoveries highlighting the metabolic malleability of plant lignification indicate that lignin can be engineered to dramatically alter its composition and properties. Current plant biotechnology efforts are primarily aimed at manipulating the biosynthesis of normal monolignols, but in the future apoplastic targeting of phenolics from other metabolic pathways may provide new approaches for designing lignins that are less inhibitory toward the enzymatic hydrolysis of structural polysaccharides, both with and without biomass pretreatment. To identify promising new avenues for lignin bioengineering, we artificially lignified cell walls from maize cell suspensions with various combinations of normal monolignols (coniferyl and sinapyl alcohols) plus a variety of phenolic monolignol substitutes. Cell walls were then incubated in vitro with anaerobic rumen microflora to assess the potential impact of lignin modifications on the enzymatic degradability of fibrous crops used for ruminant livestock or biofuel production. Results In the absence of anatomical constraints to digestion, lignification with normal monolignols hindered both the rate and extent of cell wall hydrolysis by rumen microflora. Inclusion of methyl caffeate, caffeoylquinic acid, or feruloylquinic acid with monolignols considerably depressed lignin formation and strikingly improved the degradability of cell walls. In contrast, dihydroconiferyl alcohol, guaiacyl glycerol, epicatechin, epigallocatechin, and epigallocatechin gallate readily formed copolymer-lignins with normal monolignols; cell wall degradability was moderately enhanced by greater hydroxylation or 1,2,3-triol functionality. Mono- or diferuloyl esters with various aliphatic or polyol groups readily copolymerized with monolignols, but in some cases they accelerated inactivation of wall-bound peroxidase and reduced lignification; cell wall degradability was influenced by lignin content and the degree of ester group hydroxylation. Conclusion Overall, monolignol substitutes improved the inherent degradability of non-pretreated cell walls by restricting lignification or possibly by reducing lignin hydrophobicity or cross-linking to structural polysaccharides. Furthermore some monolignol substitutes, chiefly readily cleaved bi-phenolic conjugates like epigallocatechin gallate or diferuloyl polyol esters, are expected to greatly boost the enzymatic degradability of cell walls following chemical pretreatment. In ongoing work, we are characterizing the enzymatic saccharification of intact and chemically pretreated cell walls lignified by these and other monolignol substitutes to identify promising genetic engineering targets for improving plant fiber utilization.
机译:背景技术最近的发现突出了植物木质化的代谢延展性,这表明木质素可以被工程化以显着改变其组成和性质。当前植物生物技术的努力主要旨在操纵正常的单木酚醇的生物合成,但是在将来,通过其他代谢途径对酚类物质进行质外性靶向可能为设计木质素提供新的方法,木质素对结构性多糖的酶促水解抑制作用较小,有或没有生物质预处理。为了确定有前景的木质素生物工程新途径,我们从玉米细胞悬浮液中以正常单木质醇(松柏醇和芥子醇)与各种酚类单木质醇替代物的各种组合人工木质化了细胞壁。然后将细胞壁与厌氧瘤胃微生物区系进行体外培养,以评估木质素修饰对反刍动物或生产生物燃料的纤维状作物的酶促降解能力的潜在影响。结果在没有解剖学上的消化限制的情况下,用正常的单木质素进行木质化会阻止瘤胃菌群水解细胞壁的速度和程度。将咖啡酸甲酯,咖啡酰奎尼酸或阿魏酰奎尼酸与单木酚醇混用可显着降低木质素的形成并显着改善细胞壁的降解性。相反,二氢松柏油醇,愈创木脂基甘油,表儿茶素,表没食子儿茶素和表没食子儿茶素没食子酸酯容易与正常的单木质醇形成共聚物-木质素。细胞壁的可降解性通过更大程度的羟基化或1,2,3-三醇官能度得到适度增强。具有各种脂族或多元醇基团的单或二铁甲酸酯容易与单木酚醇共聚,但在某些情况下,它们会加速壁结合的过氧化物酶的失活并减少木质素化。细胞壁的可降解性受木质素含量和酯基羟基化程度的影响。结论总体而言,单木酚替代品通过限制木质素化或可能通过降低木质素疏水性或与结构多糖的交联来改善未预处理细胞壁的固有降解性。此外,一些单木酚替代物,主要是容易裂解的双酚共轭物,例如表没食子儿茶素没食子酸酯或二铁酰基多元醇酯,有望在化学预处理后大大提高细胞壁的酶促降解能力。在正在进行的工作中,我们正在表征完整的和化学预处理的细胞壁的酶促糖化作用,这些细胞壁被这些和其他单酚替代物木质化,以鉴定有希望的基因工程靶点,以提高植物纤维的利用率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号