首页> 外文期刊>BMC Microbiology >PyroTRF-ID: a novel bioinformatics methodology for the affiliation of terminal-restriction fragments using 16S rRNA gene pyrosequencing data
【24h】

PyroTRF-ID: a novel bioinformatics methodology for the affiliation of terminal-restriction fragments using 16S rRNA gene pyrosequencing data

机译:PyroTRF-ID:一种新颖的生物信息学方法,用于使用16S rRNA基因焦磷酸测序数据进行末端限制片段的连接

获取原文
           

摘要

Background In molecular microbial ecology, massive sequencing is gradually replacing classical fingerprinting techniques such as terminal-restriction fragment length polymorphism (T-RFLP) combined with cloning-sequencing for the characterization of microbiomes. Here, a bioinformatics methodology for pyrosequencing-based T-RF identification (PyroTRF-ID) was developed to combine pyrosequencing and T-RFLP approaches for the description of microbial communities. The strength of this methodology relies on the identification of T-RFs by comparison of experimental and digital T-RFLP profiles obtained from the same samples. DNA extracts were subjected to amplification of the 16S rRNA gene pool, T-RFLP with the HaeIII restriction enzyme, 454 tag encoded FLX amplicon pyrosequencing, and PyroTRF-ID analysis. Digital T-RFLP profiles were generated from the denoised full pyrosequencing datasets, and the sequences contributing to each digital T-RF were classified to taxonomic bins using the Greengenes reference database. The method was tested both on bacterial communities found in chloroethene-contaminated groundwater samples and in aerobic granular sludge biofilms originating from wastewater treatment systems. Results PyroTRF-ID was efficient for high-throughput mapping and digital T-RFLP profiling of pyrosequencing datasets. After denoising, a dataset comprising ca. 10′000 reads of 300 to 500 bp was typically processed within ca. 20 minutes on a high-performance computing cluster, running on a Linux-related CentOS 5.5 operating system, enabling parallel processing of multiple samples. Both digital and experimental T-RFLP profiles were aligned with maximum cross-correlation coefficients of 0.71 and 0.92 for high- and low-complexity environments, respectively. On average, 63±18% of all experimental T-RFs (30 to 93 peaks per sample) were affiliated to phylotypes. Conclusions PyroTRF-ID profits from complementary advantages of pyrosequencing and T-RFLP and is particularly adapted for optimizing laboratory and computational efforts to describe microbial communities and their dynamics in any biological system. The high resolution of the microbial community composition is provided by pyrosequencing, which can be performed on a restricted set of selected samples, whereas T-RFLP enables simultaneous fingerprinting of numerous samples at relatively low cost and is especially adapted for routine analysis and follow-up of microbial communities on the long run.
机译:背景技术在分子微生物生态学中,大规模测序正在逐步取代经典的指纹技术,例如末端限制性片段长度多态性(T-RFLP)与克隆测序相结合来表征微生物组。在这里,开发了用于基于焦磷酸测序的T-RF识别(PyroTRF-ID)的生物信息学方法,以结合焦磷酸测序和T-RFLP方法来描述微生物群落。这种方法的优势在于,通过比较从相同样品获得的实验和数字T-RFLP谱图,可以鉴定T-RF。对DNA提取物进行16S rRNA基因库扩增,用HaeIII限制酶进行T-RFLP,454标签编码的FLX扩增子焦磷酸测序以及PyroTRF-ID分析。从经过去噪的完整焦磷酸测序数据集生成数字T-RFLP谱,并使用Greengenes参考数据库将有助于每个数字T-RF的序列分类到生物分类库中。对该方法进行了测试,不仅对受氯乙烯污染的地下水样品中的细菌群落以及源自废水处理系统的好氧颗粒污泥生物膜进行了测试。结果PyroTRF-ID对于焦磷酸测序数据集的高通量映射和数字T-RFLP分析非常有效。去噪后,一个数据集包括。 300到500 bp的10'000个读段通常在约200 bp内处理。在与Linux相关的CentOS 5.5操作系统上运行的高性能计算群集上,只需20分钟,即可并行处理多个样本。对于高复杂度和低复杂度的环境,数字和实验性T-RFLP配置文件的最大互相关系数分别为0.71和0.92。平均而言,所有实验性T-RF的63±18%(每个样品30-93个峰)属于系统型。结论PyroTRF-ID从焦磷酸测序和T-RFLP的互补优势中获利,特别适合优化实验室和计算工作,以描述微生物群落及其在任何生物系统中的动力学。焦磷酸测序技术可提供高分辨率的微生物群落组成,可在有限的一组选定样品上进行,而T-RFLP能够以相对较低的成本同时对众多样品进行指纹识别,尤其适用于常规分析和随访从长远来看,微生物群落的数量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号