首页> 外文期刊>BMC Molecular Biology >Interactions within the mammalian DNA methyltransferase family
【24h】

Interactions within the mammalian DNA methyltransferase family

机译:哺乳动物DNA甲基转移酶家族中的相互作用

获取原文
           

摘要

Background In mammals, epigenetic information is established and maintained via the postreplicative methylation of cytosine residues by the DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Dnmt1 is required for maintenance methylation whereas Dnmt3a and Dnmt3b are responsible for de novo methylation. Contrary to Dnmt3a or Dnmt3b, the isolated C-terminal region of Dnmt1 is catalytically inactive, despite the presence of the sequence motifs typical of active DNA methyltransferases. Deletion analysis has revealed that a large part of the N-terminal domain is required for enzymatic activity. Results The role played by the N-terminal domain in this regulation has been investigated using the yeast two-hybrid system. We show here the presence of an intra-molecular interaction in Dnmt1 but not in Dnmt3a or Dnmt3b. This interaction was confirmed by immunoprecipitation and was localized by deletion mapping. Furthermore, a systematic analysis of interactions among the Dnmt family members has revealed that DNMT3L interacts with the C-terminal domain of Dnmt3a and Dnmt3b. Conclusions The lack of methylating ability of the isolated C-terminal domain of Dnmt1 could be explained in part by a physical interaction between N- and C-terminal domains that apparently is required for activation of the catalytic domain. Our deletion analysis suggests that the tertiary structure of Dnmt1 is important in this process rather than a particular sequence motif. Furthermore, the interaction between DNMT3L and the C-terminal domains of Dnmt3a and Dnmt3b suggests a mechanism whereby the enzymatically inactive DNMT3L brings about the methylation of its substrate by recruiting an active methylase.
机译:背景技术在哺乳动物中,通过DNA甲基转移酶Dnmt1,Dnmt3a和Dnmt3b通过胞嘧啶残基的复制后甲基化来建立和维持表观遗传信息。 Dnmt1是维持甲基化所必需的,而Dnmt3a和Dnmt3b负责从头甲基化。与Dnmt3a或Dnmt3b相反,尽管存在典型的活性DNA甲基转移酶序列基序,但Dnmt1的分离的C端区域没有催化活性。缺失分析表明,酶活性需要N-末端结构域的大部分。结果已经使用酵母双杂交系统研究了N末端结构域在该调节中的作用。我们在这里显示Dnmt1中存在分子内相互作用,但在Dnmt3a或Dnmt3b中不存在。通过免疫沉淀证实了这种相互作用,并且通过缺失作图定位了该相互作用。此外,对Dnmt家族成员之间相互作用的系统分析表明,DNMT3L与Dnmt3a和Dnmt3b的C末端结构域相互作用。结论Dnmt1分离的C末端结构域缺乏甲基化能力的部分原因可能是N-和C末端结构域之间的物理相互作用,这显然是激活催化结构域所必需的。我们的缺失分析表明,Dnmt1的三级结构在此过程中很重要,而不是特定的序列基序。此外,DNMT3L与Dnmt3a和Dnmt3b的C末端结构域之间的相互作用提示了一种机制,其中酶无活性的DNMT3L通过募集活性甲基化酶使底物甲基化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号