...
首页> 外文期刊>BioMedical Engineering OnLine >Lead field theory provides a powerful tool for designing microelectrode array impedance measurements for biological cell detection and observation
【24h】

Lead field theory provides a powerful tool for designing microelectrode array impedance measurements for biological cell detection and observation

机译:引线场理论为设计用于生物细胞检测和观察的微电极阵列阻抗测量提供了强大的工具

获取原文
           

摘要

Background Our aim is to introduce a method to enhance the design process of microelectrode array (MEA) based electric bioimpedance measurement systems for improved detection and viability assessment of living cells and tissues. We propose the application of electromagnetic lead field theory and reciprocity for MEA design and measurement result interpretation. Further, we simulated impedance spectroscopy (IS) with two- and four-electrode setups and a biological cell to illustrate the tool in the assessment of the capabilities of given MEA electrode constellations for detecting cells on or in the vicinity of the microelectrodes. Results The results show the power of the lead field theory in electromagnetic simulations of cell–microelectrode systems depicting the fundamental differences of two- and four-electrode IS measurement configurations to detect cells. Accordingly, the use in MEA system design is demonstrated by assessing the differences between the two- and four-electrode IS configurations. Further, our results show how cells affect the lead fields in these MEA system, and how we can utilize the differences of the two- and four-electrode setups in cell detection. The COMSOL simulator model is provided freely in public domain as open source. Conclusions Lead field theory can be successfully applied in MEA design for the IS based assessment of biological cells providing the necessary visualization and insight for MEA design. The proposed method is expected to enhance the design and usability of automated cell and tissue manipulation systems required for bioreactors, which are intended for the automated production of cell and tissue grafts for medical purposes. MEA systems are also intended for toxicology to assess the effects of chemicals on living cells. Our results demonstrate that lead field concept is expected to enhance also the development of such methods and devices.
机译:背景技术我们的目的是介绍一种方法,以增强基于微电极阵列(MEA)的电生物阻抗测量系统的设计过程,以改善对活细胞和组织的检测和生存力评估。我们提出电磁场理论和互易性在MEA设计和测量结果解释中的应用。此外,我们模拟了具有两电极和四电极设置以及生物细胞的阻抗谱(IS),以说明评估给定MEA电极星座图能力的工具,以检测微电极上或附近的细胞。结果结果表明,超前场理论在细胞微电极系统电磁仿真中具有强大的功能,该系统描绘了用于检测细胞的两电极和四电极IS测量配置的基本差异。因此,通过评估两电极和四电极IS配置之间的差异,证明了在MEA系统设计中的使用。此外,我们的结果显示了细胞如何影响这些MEA系统中的引线场,以及如何在细胞检测中利用两电极和四电极设置的差异。 COMSOL仿真器模型作为开放源代码在公共领域免费提供。结论引导场理论可以成功地应用于MEA设计中,以基于IS的生物细胞评估为MEA设计提供必要的可视化和见识。预期所提出的方法将增强生物反应器所需的自动化细胞和组织操纵系统的设计和可用性,所述生物反应器旨在用于医学目的自动化生产细胞和组织移植物。 MEA系统还用于毒理学,以评估化学物质对活细胞的影响。我们的结果表明,领先领域的概念有望增强这种方法和设备的开发。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号