首页> 外文期刊>BMC Medical Research Methodology >Measurement error in time-series analysis: a simulation study comparing modelled and monitored data
【24h】

Measurement error in time-series analysis: a simulation study comparing modelled and monitored data

机译:时间序列分析中的测量误差:比较建模数据和监视数据的模拟研究

获取原文
           

摘要

Background Assessing health effects from background exposure to air pollution is often hampered by the sparseness of pollution monitoring networks. However, regional atmospheric chemistry-transport models (CTMs) can provide pollution data with national coverage at fine geographical and temporal resolution. We used statistical simulation to compare the impact on epidemiological time-series analysis of additive measurement error in sparse monitor data as opposed to geographically and temporally complete model data. Methods Statistical simulations were based on a theoretical area of 4 regions each consisting of twenty-five 5 km × 5 km grid-squares. In the context of a 3-year Poisson regression time-series analysis of the association between mortality and a single pollutant, we compared the error impact of using daily grid-specific model data as opposed to daily regional average monitor data. We investigated how this comparison was affected if we changed the number of grids per region containing a monitor. To inform simulations, estimates (e.g. of pollutant means) were obtained from observed monitor data for 2003–2006 for national network sites across the UK and corresponding model data that were generated by the EMEP-WRF CTM. Average within-site correlations between observed monitor and model data were 0.73 and 0.76 for rural and urban daily maximum 8-hour ozone respectively, and 0.67 and 0.61 for rural and urban loge(daily 1-hour maximum NO2). Results When regional averages were based on 5 or 10 monitors per region, health effect estimates exhibited little bias. However, with only 1 monitor per region, the regression coefficient in our time-series analysis was attenuated by an estimated 6% for urban background ozone, 13% for rural ozone, 29% for urban background loge(NO2) and 38% for rural loge(NO2). For grid-specific model data the corresponding figures were 19%, 22%, 54% and 44% respectively, i.e. similar for rural loge(NO2) but more marked for urban loge(NO2). Conclusion Even if correlations between model and monitor data appear reasonably strong, additive classical measurement error in model data may lead to appreciable bias in health effect estimates. As process-based air pollution models become more widely used in epidemiological time-series analysis, assessments of error impact that include statistical simulation may be useful.
机译:背景污染监测网络的稀疏性常常阻碍了评估背景暴露于空气污染对健康的影响。但是,区域大气化学运输模型(CTM)可以在精细的地理和时间分辨率下提供覆盖全国的污染数据。我们使用统计模拟来比较稀疏监视数据(而不是地理和时间完整的模型数据)对附加测量误差对流行病学时间序列分析的影响。方法统计模拟是基于4个区域的理论区域,每个区域由25个5 km×5 km的网格正方形组成。在对死亡率和单一污染物之间的关联进行3年的Poisson回归时间序列分析的背景下,我们比较了使用每日特定于网格的模型数据而不是每日区域平均监测器数据的误差影响。我们研究了如果更改每个包含监视器的区域的网格数,则该比较如何受到影响。为了为模拟提供依据,估算值(例如,污染物平均值)是从2003-2006年全英国范围内国家站点的监测数据以及EMEP-WRF CTM生成的相应模型数据中获得的。观测到的监测器和模型数据之间的现场平均相关性分别为:农村和城市每日最大8小时臭氧分别为0.73和0.76,而农村和城市log e (每天1小时最大)为0.67和0.61 NO 2 )。结果当区域平均值基于每个区域5或10个监视器时,健康影响估计值几乎没有偏差。但是,每个区域只有1个监测器,我们的时间序列分析中的回归系数估计减少了城市背景臭氧6%,农村臭氧13%,城市背景log e 29% (NO 2 )和38%的农村原木 e (NO 2 )。对于特定于网格的模型数据,相应的数字分别为19%,22%,54%和44%,即,与农村原木 e (NO 2 )相似,但更显着用于城市原木 e (NO 2 )。结论即使模型数据与监测数据之间的相关性似乎相当强,模型数据中附加的经典测量误差也可能导致健康影响估计值出现明显偏差。随着基于过程的空气污染模型越来越广泛地用于流行病学时间序列分析中,包括统计模拟在内的错误影响评估可能会有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号