...
首页> 外文期刊>Boundary value problems >Multiplicity of solutions for a class of fractional Emphasis Type="Italic"p/Emphasis-Kirchhoff system with sign-changing weight functions
【24h】

Multiplicity of solutions for a class of fractional Emphasis Type="Italic"p/Emphasis-Kirchhoff system with sign-changing weight functions

机译:一类分数阶加权函数的 p -Kirchhoff系统的多重解

获取原文
   

获取外文期刊封面封底 >>

       

摘要

In this paper, we investigate the fractional p-Kirchhoff -type system: $$egin{aligned} extstyleegin{cases} M (int_{{ mathbb {R} }^{2N}}rac{ert u(x)-u(y) ert ^{p}}{ert x-y ert ^{N+ps}},dx,dy )(- Delta )^{s}_{p}u=mu g(x)ert u ert ^{eta -2}u+rac{a}{a+b}h(x)ert u ert ^{a-2}uert v ert ^{b},&mbox{in } Omega , M (int_{{ mathbb {R} }^{2N}}rac{ert v(x)-v(y) ert ^{p}}{ert x-y ert ^{N+ps}},dx,dy )(- Delta )^{s}_{p}v=sigma f(x)ert v ert ^{eta -2}v+rac{b}{a+b}h(x)ert v ert ^{b-2}vert u ert ^{a},&mbox{in } Omega , u=v=0,&mbox{in } { mathbb {R} }^{N}setminus Omega , end{cases}displaystyle end{aligned}$$ where (Omega subset mathbb{R}^{N}) is a smooth bounded domain, ((-Delta )^{s}_{p}) is the fractional p-Laplacian operator with (0 s1p) and (ps N ). (a1), (b1) satisfy (2 a+b p_{s}^{*}). (1eta p_{s}^{*}), (p_{s}^{*}=rac{Np}{N-ps}) is the fractional critical exponent. ??, ?? are two real parameters. (M(t)=k+lambda t^{au }), (k0), ??, (au geq 0), (au =0) if and only if (lambda =0). The weight functions g, f, h change sign in ?? and satisfy suitable conditions. By using the Nehari manifold method, it is proved that the system has at least two solutions provided that (2 a+b pleq p(au +1)eta p_{s}^{*}) and ((mu ,sigma )) belongs to a certain subset of (mathbb {R} ^{2}). Also, by using the mountain pass theorem, we prove that there exist (lambda _{1}geq lambda_{0}) such that the system admits at least a nontrivial solution for (lambda in (0,lambda_{0})) and no nontrivial solution for (lambda lambda_{1}) under the assumptions (mu =sigma =0) and (p a+bmin {p(au +1),p_{s}^{*}}).KeywordsFractional p-Kirchhoff system??Multiplicity??Sign-changing weight functions??Nehari manifold??Mountain pass theorem??MSC35R11??35A15??35J60??1 IntroductionIn this paper, we investigate the multiplicity of solutions to the following fractional elliptic system: $$egin{aligned} extstyleegin{cases} M (int_{{ mathbb {R} }^{2N}}rac{ert u(x)-u(y) ert ^{p}}{ert x-y ert ^{N+ps}},dx,dy )(-Delta )^{s}_{p}u=mu g(x)ert u ert ^{eta -2}u+rac{a}{a+b}h(x)ert u ert ^{a-2}uert v ert ^{b } &mbox{in } Omega , M (int_{{ mathbb {R} }^{2N}}rac{ert v(x)-v(y) ert ^{p}}{ert x-y ert ^{N+ps}},dx,dy )(-Delta )^{s}_{p}v=sigma f(x)ert v ert ^{eta -2}v+rac{b}{a+b}h(x)ert v ert ^{b-2}vert u ert ^{a } &mbox{in } Omega , u=v=0&mbox{in } { mathbb {R} }^{N}setminus Omega , end{cases}displaystyle end{aligned}$$ (1.1) where (Omega subset mathbb{R}^{N}) is a smooth bounded domain, (0 s1p) and (ps N). (a1), (b1) satisfy (2 a+b p^{st }_{s}). (1eta p_{s}^{*}), (p_{s}^{*}=rac{Np}{N-ps}) is the fractional critical exponent. ??, ?? are two real parameters. (M(t)=k+lambda t^{au }), (k0), ??, (au geq 0), (au =0) if and only if (lambda =0). The weight functions g, f, h change sign in ?? and satisfy further assumption which will be given later. ((-Delta )^{s}_{p}) is the fractional p-Laplacian operator defined on smooth functions by $$ (-Delta )^{s}_{p}m(x)=2lim_{arepsilon ightarrow 0^{+}} int_{{ mathbb {R} }^{N}setminus B_{arepsilon }(x)} rac{ert m(x)-m(y) ert ^{p-2}(m(x)-m(y))}{ert x-y ert ^{N+ps}},dy,quad xin { mathbb {R} } ^{N}. $$Problem (1.1) is related to the stationary analogue of the following Kirchhoff model: $$ ho u_{tt}- iggl(rac{p_{0}}{h}+rac{E}{2L} int_{0}^{L}u_{x}^{2},dx iggr)u _{xx}=0 $$ which was proposed by Kirchhoff in 1883 as a generalization of the well-known Da??Alembert wave equation for free vibrations of elastic strings, where ??, (p_{0}), h, E, L are constants which represent some physical meanings, respectively. Indeed, Kirchhoffa??s model takes into account the changes in length of the string produced by transverse vibrations. In particular, Kirchhoffa??s equation models several physical and biological systems, we refer to [1] for more details. The Kirchhoff type equation and system have attracted attention and have been discussed by many authors, we refer to [9, 14, 21, 22, 23, 29] and the references therein.Up to now, a great attention has been paid to the study of the fractional Laplacian equation and system, see, for example, [4, 5, 10, 11, 13, 18, 22, 23, 29, 30, 33]. In particular, the fractional and nonlocal operators of elliptic type arise in a quite natural way in many different applications, such as continuum mechanics, phase transition phenomena, population dynamics, and game theory, as they are the typical outcome of stochastic stabilization of L??vy processes, see [2, 8]. The literature on fractional nonlocal operators and their applications is very interesting and quite large, see, fo
机译:在本文中,我们研究了分数p-Kirchhoff型系统:$$ begin {aligned} textstyle begin {cases} M( int _ {{ mathbb {R}} ^ {2N}} frac { vert u(x)-u(y) vert ^ {p}} { vert xy vert ^ {N + ps}} ,dx ,dy)(- Delta)^ {s} _ {p} u = mu g(x) vert u vert ^ { beta -2} u + frac {a} {a + b} h(x) vert u vert ^ {a-2} u vert v vert ^ {b},& mbox {in} Omega, M( int _ {{ mathbb {R}} ^ {2N}} frac { vert v(x)-v(y) vert ^ {p}} { vert xy vert ^ {N + ps}} ,dx ,dy)(- Delta)^ {s} _ {p} v = sigma f(x) vert v vert ^ { beta -2} v + frac {b} {a + b} h(x) vert v vert ^ {b-2} v vert u vert ^ {a},& mbox {在} Omega中, u = v = 0,& mbox {in} { mathbb {R}} ^ {N} setminus Omega中, end {cases} displaystyle end {aligned} $$其中( Omega subset mathbb {R} ^ {N} )是一个光滑的有界域,((- Delta ^^ {s} _ {p} )是分数 -Laplacian算子,其中( 0 1 ),(b> 1 )满足(2 + b _ {s} ^ {*} )。 (1 < beta _ {s} ^ {*} ),(p_ {s} ^ {*} = frac {Np} {N-ps} )是分数临界指数。 ??,??是两个真实参数。 (M(t)= k + lambda t ^ { tau} ),(k> 0 ),??,( tau geq 0 ),( tau = 0 )仅当( lambda = 0 )时。权重函数g,f,h改变符号??并满足合适的条件。通过使用Nehari流形方法,证明了系统具有至少两个解,只要(2 + b leq p( tau +1)< beta _ {s} ^ {*} )和(( mu, sigma))属于( mathbb {R} ^ {2} )的某个子集。另外,通过使用山口定理,我们证明存在( lambda _ {1} geq lambda_ {0} ),因此系统至少可以接受( lambda in(0 , lambda_ {0}))并在假设( mu = sigma = 0 )和(p + b <的情况下,没有针对( lambda> lambda_ {1} )的非平凡解。 min {p( tau +1),p_ {s} ^ {*} } )。关键字分数阶p-Kirchhoff系统多样性变号权函数Nehari流形山地定理MSC35R11 ?? 35A15 ?? 35J60 ?? 1简介本文中,我们研究了以下分数椭圆系统的多重解:$$ begin {aligned} textstyle begin {cases} M( int _ {{ mathbb { R}} ^ {2N}} frac { vert u(x)-u(y) vert ^ {p}} { vert xy vert ^ {N + ps}} ,dx ,dy)( - Delta)^ {s} _ {p} u = mu g(x) vert u vert ^ { beta -2} u + frac {a} {a + b} h(x) vert u vert ^ {a-2} u vert v vert ^ {b}& mbox {in} Omega, M( int _ {{ mathbb {R}} ^ {2N}} frac { vert v(x)-v(y) vert ^ {p}} { vert xy vert ^ {N + ps}} ,dx ,dy)(- Delta)^ {s} _ {p} v = sigma f(x) vert v vert ^ { beta -2} v + frac {b} {a + b} h(x) vert v vert ^ {b-2} v vert u vert ^ {a}& mbox {in} Omega, u = v = 0& mbox {in} { mathbb {R}} ^ {N} setminus Omega, end {cases} displaystyle end {aligned} $$(1.1)其中( Omega subset mathbb {R} ^ {N} )是一个光滑有界域,(0 1 ),(b> 1 )满足(2 + b ^ { ast} _ {s} )。 (1 < beta _ {s} ^ {*} ),(p_ {s} ^ {*} = frac {Np} {N-ps} )是分数临界指数。 ??,??是两个真实参数。 (M(t)= k + lambda t ^ { tau} ),(k> 0 ),??,( tau geq 0 ),( tau = 0 )仅当( lambda = 0 )时。权重函数g,f,h改变符号??并满足将在以后给出的进一步假设。 ((- Delta)^ {s} _ {p} )是由$$(- Delta)^ {s} _ {p} m(x)= 2在平滑函数上定义的分数p-Laplacian运算符 lim _ { varepsilon rightarrow 0 ^ {+}} int _ {{ mathbb {R}} ^ {N} setminus B _ { varepsilon}(x)} frac { vert m(x)-m( y) vert ^ {p-2}(m(x)-m(y))} { vert xy vert ^ {N + ps}} ,dy, quad x in { mathbb {R} } ^ {N}。 $$问题(1.1)与以下Kirchhoff模型的平稳类似物有关:$$ rho u_ {tt}- biggl( frac {p_ {0}} {h} + frac {E} {2L} int_ {0} ^ {L} u_ {x} ^ {2} ,dx biggr)u _ {xx} = 0 $$,这是Kirchhoff在1883年提出的,是对著名的Da?的概括。弹性弦自由振动的Alembert波方程,其中??,(p_ {0} ),h,E,L是常数,分别表示某些物理意义。实际上,基尔霍夫法的模型考虑了由横向振动产生的琴弦长度的变化。特别是,基尔霍夫法方程对几种物理和生物系统进行建模,更多细节请参考[1]。 Kirchhoff型方程和系统引起了人们的关注,并已被许多作者讨论,我们参考了[9,14,21,22,23,29]及其参考文献。关于分数拉普拉斯方程和系统的研究,例如,参见[4,5,10,11,11,13,18,22,23,29,30,33]。特别是,椭圆型的分数次和非局部算子在许多不同的应用中以很自然的方式出现,例如连续力学,相变现象,种群动力学和博弈论,因为它们是L?随机稳定的典型结果。灵活的过程,请参见[2,8]。关于分数非局部算子及其应用的文献非常有趣,而且非常庞大,请参见

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号