...
首页> 外文期刊>BRAIN. Broad Research in Artificial Intelligence and Neurosciences >Early Warning of Heat/Cold Waves as a Smart City Subsystem: A Retrospective Case Study of Non-anticipative Analog methodology
【24h】

Early Warning of Heat/Cold Waves as a Smart City Subsystem: A Retrospective Case Study of Non-anticipative Analog methodology

机译:作为智能城市子系统的热/冷波预警:非预期模拟方法的回顾性案例研究

获取原文
   

获取外文期刊封面封底 >>

       

摘要

In this paper, the self-organizing inductive methodology is applied for the non-anticipative analog forecasting of the heat/cold waves in the natural environment subsystem of the smart city. The prediction algorithm is described by two paradigms. First one (short range) uses quantum computing formalism. D-Wave adiabatic quantum computing Ising model is employed and evaluated for the forecasting of positive extremes of daily mean air temperature. Forecast models are designed with two to five qubits, which represent 2-, 3-, 4-, and 5-day historical data, respectively. Ising model’s real-valued weights and dimensionless coefficients are calculated using daily mean air temperatures from 119 places around the world as well as sea level (Aburatsu, Japan). The proposed forecast quantum computing algorithm is simulated based on traditional computer architecture and combinatorial optimization of Ising model parameters for the Ronald Reagan Washington National Airport dataset with 1-day lead-time on learning sample 1975-2010 yr. Analysis of the forecast accuracy (ratio of successful predictions to total number of predictions) on the validation sample 2011-2014 yr shows that Ising model with three qubits has 100% accuracy, which is significant as compared to other methods. However, number of identified heat waves is small (only one out of nineteen in this case). Second paradigm (long range) uses classical computation in the Microsoft Azure public cloud. Here, the forecast method identifies the dependencies between the current values of two meteorological variables and the future state of another variable. The method is applied to the prediction of heat/cold waves at Ronald Reagan Washington National Airport. The data include the above-stated datasets plus monthly mean Darwin and Tahiti sea level pressures, SOI, equatorial SOI, sea surface temperature, and multivariate ENSO index (131 datasets in total). Every dataset is split into two samples, for learning and validation, respectively. Initially, the sum of the values at two different locations (minus corresponding expectation values) is calculated with lead-time from 14 to 365 days on summation interval of length from 1 to 365 days. Objective function defines the distribution based on two input datasets with appropriate lead-time and summation interval, which have maximum (or minimum) sum compared with the rest of data four times at least (with a minimum time difference of at least 30 days) when extreme event occurs on the learning sample. Specific extreme events at Ronald Reagan Washington National Airport were thus predicted on the validation sample, based on rules referring to events in earlier years. Some extremes are specifically predicted (up to 26.3% of all extremes). The methodology has 100% forecast accuracy with respect to the sign of predicted and actual values. Nowadays, the smart city project is developed at School of Engineering and Sciences (San Luis Potosi), Tecnológico de Monterrey. The early warning of heat/cold waves as well as technical aspect (remote control with Arduino Ethernet Shield and virtual power plant with solar energy are emphasized) are the focus of the Internet of Things project.
机译:本文采用自组织归纳法对智能城市自然环境子系统中的热/冷波进行非预期的模拟预测。预测算法由两个范式描述。第一个(短距离)使用量子计算形式主义。使用D-Wave绝热量子计算Ising模型并对其进行评估,以预测每日平均气温的正极端。预测模型设计有2到5个量子位,分别表示2天,3天,4天和5天的历史数据。 Ising模型的实际值权重和无因次系数是使用来自全球119个地方的日平均气温以及海平面(日本,阿伯松)来计算的。在传统的计算机体系结构和Ising模型参数组合优化的基础上,针对罗纳德·里根华盛顿国家机场数据集模拟了拟议的预测量子计算算法,该模型的学习样本为1975-2010年,交货期为1天。对验证样本2011-2014 yr的预测准确性(成功预测与预测总数的比率)的分析表明,三个qubit的Ising模型具有100%的准确性,与其他方法相比,该准确性很高。但是,识别出的热波数量很少(在这种情况下,只有十九分之一)。第二范式(远程)在Microsoft Azure公共云中使用经典计算。在此,预测方法确定了两个气象变量的当前值与另一个变量的未来状态之间的依赖关系。该方法应用于罗纳德·里根华盛顿国家机场的热/冷波预测。这些数据包括上述数据集以及达尔文和塔希提岛海平面每月压力,SOI,赤道SOI,海面温度和ENSO多元变量(总共131个数据集)。每个数据集都分为两个样本,分别用于学习和验证。最初,两个交货地点的值之和(减去相应的期望值)的计算周期为14至365天,总间隔为1至365天。目标函数基于具有适当提前期和求和间隔的两个输入数据集定义分布,它们在以下情况下具有最大(或最小)总和,与其余数据相比至少四倍(最小时差至少30天)极端事件发生在学习样本上。因此,根据涉及早期事件的规则,在验证样本中预测了罗纳德·里根华盛顿国家机场的特定极端事件。专门预测了一些极端情况(占所有极端情况的26.3%)。该方法相对于预测值和实际值的符号具有100%的预测准确性。如今,智能城市项目是在蒙特雷Tecnológico的工程与科学学院(圣路易斯波托西)开发的。物联网项目的重点是热/冷波的预警以及技术方面(强调使用Arduino Ethernet Shield进行远程控制以及使用太阳能的虚拟发电厂)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号