...
首页> 外文期刊>Brazilian journal of chemical engineering >THE EFFECT OF SYSTEM TEMPERATURE AND PRESSURE ON THE FLUID-DYNAMIC BEHAVIOR OF THE SUPERCRITICAL ANTISOLVENT MICRONIZATION PROCESS: A NUMERICAL APPROACH
【24h】

THE EFFECT OF SYSTEM TEMPERATURE AND PRESSURE ON THE FLUID-DYNAMIC BEHAVIOR OF THE SUPERCRITICAL ANTISOLVENT MICRONIZATION PROCESS: A NUMERICAL APPROACH

机译:系统温度和压力对超临界抗微粉化过程流体动力学行为的影响:一种数值方法

获取原文
   

获取外文期刊封面封底 >>

       

摘要

The Supercritical Antisolvent (SAS) technique allows for the precipitation of drugs and biopolymers in nanometer size in a wide range of industrial applications, while guaranteeing the physical and chemical integrity of such materials. However, a suitable combination of operating parameters is needed for each type of solute. The knowledge of fluid dynamics behavior plays a key role in the search for such parameter combinations. This work presents a numerical study concerning the impact of operating temperature and pressure upon the physical properties and mixture dynamics within the SAS process, because in supercritical conditions the radius of the droplets formed exhibits great sensitivity to these variables. For the conditions analyzed, to account for the heat of mixture in the energy balance, subtle variations in the temperature fields were observed, with almost negligible pressure drop. From analyses of the intensity of segregation, there is an enhancement of the mixture on the molecular scale when the system is operated at higher pressure. This corroborates experimental observations from the literature, related to smaller diameters of particles under higher pressures. Hence, the model resulted in a versatile tool for selecting conditions that may promote a better control over the performance of the SAS process.
机译:超临界抗溶剂(SAS)技术允许在广泛的工业应用中以纳米级尺寸沉淀药物和生物聚合物,同时保证此类材料的物理和化学完整性。但是,每种溶质都需要适当组合操作参数。流体动力学行为的知识在搜索此类参数组合中起着关键作用。这项工作提出了一个有关工作温度和压力对SAS过程中物理性质和混合物动力学影响的数值研究,因为在超临界条件下,形成的液滴半径对这些变量表现出极大的敏感性。对于分析条件,考虑到能量平衡中混合物的热量,观察到温度场的细微变化,压降几乎可以忽略不计。从偏析强度的分析中,当系统在较高压力下运行时,混合物在分子规模上得到增强。这证实了文献中有关高压下较小直径颗粒的实验观察结果。因此,该模型产生了用于选择条件的通用工具,可以促进对SAS过程性能的更好控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号