首页> 外文期刊>BMC Biology >Logic modeling and the ridiculome under the rug
【24h】

Logic modeling and the ridiculome under the rug

机译:逻辑建模和地毯下的嘲笑

获取原文
           

摘要

Logic-derived modeling has been used to map biological networks and to study arbitrary functional interactions, and fine-grained kinetic modeling can accurately predict the detailed behavior of well-characterized molecular systems; at present, however, neither approach comes close to unraveling the full complexity of a cell. The current data revolution offers significant promises and challenges to both approaches - and could bring them together as it has spurred the development of new methods and tools that may help to bridge the many gaps between data, models, and mechanistic understanding. Have you used logic modeling in your research? It would not be surprising if many biologists would answer no to this hypothetical question. And it would not be true. In high school biology we already became familiar with cartoon diagrams that illustrate basic mechanisms of the molecular machinery operating inside cells. These are nothing else but simple logic models. If receptor and ligand are present, then receptor-ligand complexes form; if a receptor-ligand complex exists, then an enzyme gets activated; if the enzyme is active, then a second messenger is being produced; and so on. Such chains of causality are the essence of logic models (Figure 1a). Arbitrary events and mechanisms are abstracted; relationships are simplified and usually involve just two possible conditions and three possible consequences. The presence or absence of one or more molecule, activity, or function, [some icons in the cartoon] will determine whether another one of them will be produced (created, up-regulated, stimulated) [a 'positive' link] or destroyed (degraded, down-regulated, inhibited) [a 'negative' link], or be unaffected [there is no link]. The icons and links often do not follow a standardized format, but when we look at such a cartoon diagram, we believe that we 'understand' how the system works. Because our brain is easily able to process these relationships, these diagrams allow us to answer two fundamental types of questions related to the system: why (are certain things happening)? What if (we make some changes)?
机译:逻辑派生的建模已用于绘制生物网络图并研究任意功能相互作用,而细粒度的动力学建模则可以准确地预测良好表征的分子系统的详细行为;但是,目前,两种方法都无法完全揭示单元的全部复杂性。当前的数据革命给这两种方法都带来了重大的希望和挑战-并可能将它们融合在一起,因为它刺激了新方法和工具的开发,这些新方法和工具可能有助于弥合数据,模型和机制理解之间的许多鸿沟。您在研究中使用过逻辑建模吗?如果许多生物学家对这个假设问题回答“否”,就不足为奇了。事实并非如此。在高中生物学中,我们已经熟悉了卡通图,这些图说明了细胞内部分子机械运转的基本机理。这些不过是简单的逻辑模型而已。如果存在受体和配体,则形成受体-配体复合物;如果存在受体-配体复合物,则酶被激活;如果酶是有活性的,则产生第二个信使;等等。这种因果关系链是逻辑模型的本质(图1a)。任意事件和机制被抽象化;关系得到简化,通常只涉及两个可能的条件和三个可能的后果。一个或多个分子,活性或功能的存在与否([卡通中的某些图标])将决定是产生(创建,上调,刺激)[一个正链接]还是销毁它们中的另一个。 (降级,下调,抑制)[否定链接],或不受影响[没有链接]。图标和链接通常不遵循标准格式,但是当我们查看这样的卡通图时,我们认为我们“了解”了系统的工作方式。因为我们的大脑很容易处理这些关系,所以这些图使我们能够回答与系统相关的两种基本类型的问题:为什么(某些事情正在发生)?如果(我们进行一些更改)怎么办?

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号