首页> 外文期刊>BMC Biology >Imbalance of heterologous protein folding and disulfide bond formation rates yields runaway oxidative stress
【24h】

Imbalance of heterologous protein folding and disulfide bond formation rates yields runaway oxidative stress

机译:异源蛋白质折叠和二硫键形成速率的不平衡产生失控的氧化应激

获取原文
           

摘要

Background The protein secretory pathway must process a wide assortment of native proteins for eukaryotic cells to function. As well, recombinant protein secretion is used extensively to produce many biologics and industrial enzymes. Therefore, secretory pathway dysfunction can be highly detrimental to the cell and can drastically inhibit product titers in biochemical production. Because the secretory pathway is a highly-integrated, multi-organelle system, dysfunction can happen at many levels and dissecting the root cause can be challenging. In this study, we apply a systems biology approach to analyze secretory pathway dysfunctions resulting from heterologous production of a small protein (insulin precursor) or a larger protein (α-amylase). Results HAC1 -dependent and independent dysfunctions and cellular responses were apparent across multiple datasets. In particular, processes involving (a) degradation of protein/recycling amino acids, (b) overall transcription/translation repression, and (c) oxidative stress were broadly associated with secretory stress. Conclusions Apparent runaway oxidative stress due to radical production observed here and elsewhere can be explained by a futile cycle of disulfide formation and breaking that consumes reduced glutathione and produces reactive oxygen species. The futile cycle is dominating when protein folding rates are low relative to disulfide bond formation rates. While not strictly conclusive with the present data, this insight does provide a molecular interpretation to an, until now, largely empirical understanding of optimizing heterologous protein secretion. This molecular insight has direct implications on engineering a broad range of recombinant proteins for secretion and provides potential hypotheses for the root causes of several secretory-associated diseases.
机译:背景技术蛋白质分泌途径必须处理各种各样的天然蛋白质,以使真核细胞发挥功能。同样,重组蛋白分泌被广泛用于产生许多生物制剂和工业酶。因此,分泌途径功能障碍可能对细胞高度有害,并且可以在生化生产中极大地抑制产物滴度。因为分泌途径是高度集成的多细胞器系统,所以功能障碍可能会在许多级别发生,并且剖析根本原因可能具有挑战性。在这项研究中,我们应用系统生物学方法来分析由小蛋白(胰岛素前体)或大蛋白(α-淀粉酶)异源产生的分泌途径功能障碍。结果HAC1依赖和独立的功能障碍和细胞反应在多个数据集中均显而易见。特别地,涉及(a)蛋白质降解/再循环氨基酸,(b)总体转录/翻译抑制和(c)氧化应激的过程广泛地与分泌应激相关。结论在这里和其他地方观察到由于自由基产生而产生的明显失控氧化应激可以用无用的二硫键形成和断裂循环来解释,该循环消耗了还原型谷胱甘肽并产生了活性氧。当蛋白质折叠速率相对于二硫键形成速率低时,无效的循环占主导。尽管与目前的数据没有严格的结论性关系,但这种见解确实为迄今为止优化优化异源蛋白质分泌的大量经验性理解提供了分子解释。这种分子洞察力对工程改造广泛的分泌蛋白重组蛋白具有直接意义,并为几种与分泌有关的疾病的根本原因提供了潜在的假设。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号