...
首页> 外文期刊>BMC Structural Biology >Defining structural and evolutionary modules in proteins: a community detection approach to explore sub-domain architecture
【24h】

Defining structural and evolutionary modules in proteins: a community detection approach to explore sub-domain architecture

机译:定义蛋白质中的结构和进化模块:探索亚域结构的社区检测方法

获取原文
           

摘要

Background Assessing protein modularity is important to understand protein evolution. Still the question of the existence of a sub-domain modular architecture remains. We propose a graph-theory approach with significance and power testing to identify modules in protein structures. In the first step, clusters are determined by optimizing the partition that maximizes the modularity score. Second, each cluster is tested for significance. Significant clusters are referred to as modules. Evolutionary modules are identified by analyzing homologous structures. Dynamic modules are inferred from sets of snapshots of molecular simulations. We present here a methodology to identify sub-domain architecture robustly, biologically meaningful, and statistically supported. Results The robustness of this new method is tested using simulated data with known modularity. Modules are correctly identified even when there is a low correlation between landmarks within a module. We also analyzed the evolutionary modularity of a data set of α-amylase catalytic domain homologs, and the dynamic modularity of the Niemann-Pick C1 (NPC1) protein N-terminal domain. The α-amylase contains an (α/β)8 barrel (TIM barrel) with the polysaccharides cleavage site and a calcium-binding domain. In this data set we identified four robust evolutionary modules, one of which forms the minimal functional TIM barrel topology. The NPC1 protein is involved in the intracellular lipid metabolism coordinating sterol trafficking. NPC1 N-terminus is the first luminal domain which binds to cholesterol and its oxygenated derivatives. Our inferred dynamic modules in the protein NPC1 are also shown to match functional components of the protein related to the NPC1 disease. Conclusions A domain compartmentalization can be found and described in correlation space. To our knowledge, there is no other method attempting to identify sub-domain architecture from the correlation among residues. Most attempts made focus on sequence motifs of protein-protein interactions, binding sites, or sequence conservancy. We were able to describe functional/structural sub-domain architecture related to key residues for starch cleavage, calcium, and chloride binding sites in the α-amylase, and sterol opening-defining modules and disease-related residues in the NPC1. We also described the evolutionary sub-domain architecture of the α-amylase catalytic domain, identifying the already reported minimum functional TIM barrel.
机译:背景技术评估蛋白质模块性对于理解蛋白质进化至关重要。仍然存在子域模块化体系结构的问题。我们提出一种具有重要性和功效测试的图论方法,以鉴定蛋白质结构中的模块。第一步,通过优化使模块得分最大化的分区来确定集群。其次,测试每个群集的重要性。重要的群集称为模块。通过分析同源结构来鉴定进化模块。动态模块是根据分子模拟的快照集推论得出的。我们在这里提出一种方法来确定子域架构的鲁棒性,生物学意义和统计学支持。结果使用具有已知模块性的模拟数据测试了该新方法的鲁棒性。即使模块内地标之间的相关性较低,也可以正确识别模块。我们还分析了α-淀粉酶催化域同源物数据集的进化模块性,以及Niemann-Pick C1(NPC1)蛋白N末端域的动态模块性。 α-淀粉酶包含一个(α/β) 8 桶(TIM桶),该桶具有多糖切割位点和一个钙结合结构域。在此数据集中,我们确定了四个健壮的进化模块,其中一个形成了最小功能的TIM桶形拓扑。 NPC1蛋白参与细胞内脂质代谢,协调固醇的运输。 NPC1 N端是第一个与胆固醇及其氧化衍生物结合的腔结构域。我们推断出的蛋白质NPC1中的动态模块也与NPC1疾病相关的蛋白质功能组件相匹配。结论可以在相关空间中找到并描述域划分。据我们所知,没有其他方法可以根据残基之间的相关性识别子域结构。大多数尝试集中在蛋白质-蛋白质相互作用,结合位点或序列保守性的序列基序上。我们能够描述与淀粉酶,α-淀粉酶中的淀粉裂解,钙和氯化物结合位点的关键残基以及固醇开放定义模块和NPC1中与疾病相关的残基相关的功能/结构亚结构域。我们还描述了α-淀粉酶催化域的进化子域结构,确定了已报道的最小功能性TIM桶。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号