...
首页> 外文期刊>BMC Systems Biology >Combination therapy for melanoma with BRAF/MEK inhibitor and immune checkpoint inhibitor: a mathematical model
【24h】

Combination therapy for melanoma with BRAF/MEK inhibitor and immune checkpoint inhibitor: a mathematical model

机译:黑色素瘤与BRAF / MEK抑制剂和免疫检查点抑制剂的联合治疗:数学模型

获取原文
           

摘要

Background The B-raf gene is mutated in up to 66% of human malignant melanomas, and its protein product, BRAF kinase, is a key part of RAS-RAF-MEK-ERK (MAPK) pathway of cancer cell proliferation. BRAF-targeted therapy induces significant responses in the majority of patients, and the combination BRAF/MEK inhibitor enhances clinical efficacy, but the response to BRAF inhibitor and to BRAF/MEK inhibitor is short lived. On the other hand, treatment of melanoma with an immune checkpoint inhibitor, such as anti-PD-1, has lower response rate but the response is much more durable, lasting for years. For this reason, it was suggested that combination of BRAF/MEK and PD-1 inhibitors will significantly improve overall survival time. Results This paper develops a mathematical model to address the question of the correlation between BRAF/MEK inhibitor and PD-1 inhibitor in melanoma therapy. The model includes dendritic and cancer cells, CD 4+ and CD 8+ T cells, MDSC cells, interleukins IL-12, IL-2, IL-6, IL-10 and TGF- β , PD-1 and PD-L1, and the two drugs: BRAF/MEK inhibitor (with concentration γ B ) and PD-1 inhibitor (with concentration γ A ). The model is represented by a system of partial differential equations, and is used to develop an efficacy map for the combined concentrations ( γ B , γ A ). It is shown that the two drugs are positively correlated if γ B and γ A are at low doses, that is, the growth of the tumor volume decreases if either γ B or γ A is increased. On the other hand, the two drugs are antagonistic at some high doses, that is, there are zones of ( γ B , γ A ) where an increase in one of the two drugs will increase the tumor volume growth, rather than decrease it. Conclusions It will be important to identify, by animal experiments or by early clinical trials, the zones of ( γ B , γ A ) where antagonism occurs, in order to avoid these zones in more advanced clinical trials.
机译:背景B-raf基因在多达66%的人类恶性黑色素瘤中发生突变,其蛋白质产物BRAF激酶是癌细胞增殖的RAS-RAF-MEK-ERK(MAPK)途径的关键部分。以BRAF为靶点的治疗在大多数患者中引起明显的反应,并且BRAF / MEK抑制剂联合用药可提高临床疗效,但对BRAF抑制剂和对BRAF / MEK抑制剂的反应是短暂的。另一方面,用免疫检查点抑制剂(例如抗PD-1)治疗黑色素瘤的反应率较低,但反应持久得多,可持续数年。因此,有人建议将BRAF / MEK和PD-1抑制剂联合使用可显着改善总生存时间。结果本文建立了数学模型,以解决BRAF / MEK抑制剂与PD-1抑制剂在黑色素瘤治疗中的相关性问题。该模型包括树突状细胞和癌细胞,CD 4 + 和CD 8 + T细胞,MDSC细胞,白介素IL-12,IL-2,IL-6,IL- 10和TGF-β,PD-1和PD-L1,以及两种药物:BRAF / MEK抑制剂(浓度sub> B )和PD-1抑制剂(浓度γ A < / sub>)。该模型由偏微分方程组表示,用于建立组合浓度(γ B ,γ A )的功效图。结果表明,如果γ B 和γ A 处于低剂量,则这两种药物呈正相关,即,如果γ B 或γ A 增加。另一方面,这两种药物在某些高剂量下均具有拮抗作用,即在(γ B ,γ A )区域中,两种药物都会增加肿瘤体积的增长,而不是减少它。结论通过动物实验或早期临床试验,确定发生拮抗作用的(γ B ,γ A )区域非常重要,以避免这些情况区域进行更高级的临床试验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号