首页> 外文期刊>BMC Systems Biology >Optimisation of an exemplar oculomotor model using multi-objective genetic algorithms executed on a GPU-CPU combination
【24h】

Optimisation of an exemplar oculomotor model using multi-objective genetic algorithms executed on a GPU-CPU combination

机译:使用在GPU-CPU组合上执行的多目标遗传算法优化示例性动眼模型

获取原文
           

摘要

Background Parameter optimisation is a critical step in the construction of computational biology models. In eye movement research, computational models are increasingly important to understanding the mechanistic basis of normal and abnormal behaviour. In this study, we considered an existing neurobiological model of fast eye movements (saccades), capable of generating realistic simulations of: (i) normal horizontal saccades; and (ii) infantile nystagmus – pathological ocular oscillations that can be subdivided into different waveform classes. By developing appropriate fitness functions, we optimised the model to existing experimental saccade and nystagmus data, using a well-established multi-objective genetic algorithm. This algorithm required the model to be numerically integrated for very large numbers of parameter combinations. To address this computational bottleneck, we implemented a master-slave parallelisation, in which the model integrations were distributed across the compute units of a GPU, under the control of a CPU. Results While previous nystagmus fitting has been based on reproducing qualitative waveform characteristics, our optimisation protocol enabled us to perform the first direct fits of a model to experimental recordings. The fits to normal eye movements showed that although saccades of different amplitudes can be accurately simulated by individual parameter sets, a single set capable of fitting all amplitudes simultaneously cannot be determined. The fits to nystagmus oscillations systematically identified the parameter regimes in which the model can reproduce a number of canonical nystagmus waveforms to a high accuracy, whilst also identifying some waveforms that the model cannot simulate. Using a GPU to perform the model integrations yielded a speedup of around 20 compared to a high-end CPU. Conclusions The results of both optimisation problems enabled us to quantify the predictive capacity of the model, suggesting specific modifications that could expand its repertoire of simulated behaviours. In addition, the optimal parameter distributions we obtained were consistent with previous computational studies that had proposed the saccadic braking signal to be the origin of the instability preceding the development of infantile nystagmus oscillations. Finally, the master-slave parallelisation method we developed to accelerate the optimisation process can be readily adapted to fit other highly parametrised computational biology models to experimental data.
机译:背景参数优化是构建计算生物学模型的关键步骤。在眼动研究中,计算模型对于理解正常和异常行为的机理基础越来越重要。在这项研究中,我们考虑了现有的快速眼球运动(眼球扫视)的神经生物学模型,该模型能够生成以下方面的逼真模拟:(i)正常水平眼球扫视; (ii)婴儿性眼球震颤–病理性眼震荡可细分为不同的波形类别。通过开发适当的适应度函数,我们使用完善的多目标遗传算法将模型优化为现有的实验扫视和眼球震颤数据。对于大量参数组合,此算法要求将模型进行数值积分。为了解决此计算瓶颈,我们实现了主从并行化,其中模型集成在CPU的控制下分布在GPU的计算单元之间。结果虽然先前的眼球震颤拟合是基于重现定性波形特征的,但我们的优化协议使我们能够将模型与实验记录进行首次直接拟合。对正常眼睛运动的拟合显示,尽管可以通过各个参数集准确模拟不同幅度的扫视,但无法确定能够同时拟合所有幅度的单个集合。对眼球震颤的拟合系统地确定了参数范围,在该模式下,模型可以高精度地重现许多典型的眼球震颤波形,同时还可以识别模型无法仿真的某些波形。与高端CPU相比,使用GPU执行模型集成的速度提高了约20倍。结论两种优化问题的结果使我们能够量化模型的预测能力,从而提出可以改进其模拟行为功能的特定修改。此外,我们获得的最佳参数分布与先前的计算研究相一致,该研究已经提出,声震制动信号是婴儿眼震震荡发生之前的不稳定性的根源。最后,我们为加速优化过程而开发的主从并行化方法可以很容易地适应于将其他高度参数化的计算生物学模型拟合到实验数据中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号