...
首页> 外文期刊>BMC Systems Biology >A multiscale modeling study of particle size effects on the tissue penetration efficacy of drug-delivery nanoparticles
【24h】

A multiscale modeling study of particle size effects on the tissue penetration efficacy of drug-delivery nanoparticles

机译:粒度对药物递送纳米颗粒组织渗透功效影响的多尺度建模研究

获取原文

摘要

Particle size is a key parameter for drug-delivery nanoparticle design. It is believed that the size of a nanoparticle may have important effects on its ability to overcome the transport barriers in biological tissues. Nonetheless, such effects remain poorly understood. Using a multiscale model, this work investigates particle size effects on the tissue distribution and penetration efficacy of drug-delivery nanoparticles. We have developed a multiscale spatiotemporal model of nanoparticle transport in biological tissues. The model implements a time-adaptive Brownian Dynamics algorithm that links microscale particle-cell interactions and adhesion dynamics to tissue-scale particle dispersion and penetration. The model accounts for the advection, diffusion, and cellular uptakes of particles. Using the model, we have analyzed how particle size affects the intra-tissue dispersion and penetration of drug delivery nanoparticles. We focused on two published experimental works that investigated particle size effects in in vitro and in vivo tissue conditions. By analyzing experimental data reported in these two studies, we show that particle size effects may appear pronounced in an in vitro cell-free tissue system, such as collagen matrix. In an in vivo tissue system, the effects of particle size could be relatively modest. We provide a detailed analysis on how particle-cell interactions may determine distribution and penetration of nanoparticles in a biological tissue. Our work suggests that the size of a nanoparticle may play a less significant role in its ability to overcome the intra-tissue transport barriers. We show that experiments involving cell-free tissue systems may yield misleading observations of particle size effects due to the absence of advective transport and particle-cell interactions.
机译:粒度是药物递送纳米颗粒设计的关键参数。据信,纳米颗粒的尺寸可能对其克服生物组织中的运输障碍的能力具有重要影响。尽管如此,这种影响仍然知之甚少。使用多尺度模型,这项工作研究了粒径对药物递送纳米颗粒的组织分布和渗透功效的影响。我们已经开发了生物组织中纳米粒子运输的多尺度时空模型。该模型实现了一种时间自适应的布朗动力学算法,该算法将微观尺度的粒子-细胞相互作用和粘附动力学与组织尺度的粒子分散和渗透联系在一起。该模型说明了粒子的对流,扩散和细胞吸收。使用该模型,我们分析了粒径如何影响组织内分散和药物输送纳米颗粒的渗透。我们专注于两项发表的实验性作品,研究了体外和体内组织条件下粒径的影响。通过分析在这两项研究中报告的实验数据,我们表明,在体外无细胞组织系统(例如胶原蛋白基质)中,粒径效应可能显得很明显。在体内组织系统中,粒径的影响可能相对较小。我们提供了有关颗粒-细胞相互作用如何确定生物组织中纳米颗粒分布和渗透的详细分析。我们的工作表明,纳米颗粒的尺寸在克服组织内运输障碍的能力中可能起着较小的作用。我们表明,涉及到无细胞组织系统的实验可能会由于缺乏对流传输和颗粒间相互作用而产生对粒度影响的误导性观察。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号