首页> 外文期刊>Beilstein Journal of Nanotechnology >Pull-off and friction forces of micropatterned elastomers on soft substrates: the effects of pattern length scale and stiffness
【24h】

Pull-off and friction forces of micropatterned elastomers on soft substrates: the effects of pattern length scale and stiffness

机译:微图案化弹性体在柔软基材上的剥离力和摩擦力:图案长度比例和刚度的影响

获取原文
           

摘要

The adhesiveness of biological micropatterned adhesives primarily relies on their geometry (e.g., feature size, architecture) and material properties (e.g., stiffness). Over the last few decades, researchers have been mimicking the geometry and material properties of biological micropatterned adhesives. The performance of these biomimetic micropatterned adhesives is usually tested on hard substrates. Much less is known about the effect of geometry, feature size, and material properties on the performance of micropatterned adhesives when the substrate is deformable. Here, micropatterned adhesives of two stiffness degrees (Young’s moduli of 280 and 580 kPa) were fabricated from poly(dimethylsiloxane) (PDMS) and tested on soft poly(vinyl alcohol) (PVA) substrates of two stiffness degrees (12 and 18 kPa), and on hard glass substrates as a reference. An out-of-the-cleanroom colloidal lithographic approach was successfully expanded to fabricate adhesives with two geometries, namely dimples with and without a terminal layer. Dimples without a terminal layer were fabricated on two length scales, namely with sub-microscale and microscale dimple diameters. The cross section of samples with a terminal layer showed voids with a spherical shape, separated by hourglass-shaped walls. These voids penetrate the terminal layer, resulting in an array of holes at the surface. We found that on soft substrates, generally, the size of the dimples did not affect pull-off forces. The positive effects of sub-microscale features on pull-off and friction forces, such as defect control and crack trapping, as reported in the literature for hard substrates, seem to disappear on soft substrates. The dimple geometry with a terminal layer generated significantly higher pull-off forces compared to other geometries, presumably due to interlocking of the soft substrate into the holes of the terminal layer. Pull-off from soft substrates increased with the substrate stiffness for all tested geometries. Friction forces on soft substrates were the highest for microscale dimples without a terminal layer, likely due to interlocking of the soft substrate between the dimples.
机译:生物微图案粘合剂的粘附性主要取决于它们的几何形状(例如,特征尺寸,结构)和材料特性(例如,刚度)。在过去的几十年中,研究人员一直在模仿生物微图案粘合剂的几何形状和材料特性。这些仿生微图案化粘合剂的性能通常在硬质基材上进行测试。当基材可变形时,关于几何形状,特征尺寸和材料特性对微图案化粘合剂性能的影响知之甚少。在此,由聚二甲基硅氧烷(PDMS)制成了两个刚度度(杨氏模量分别为280和580 kPa)的微图案粘合剂,并在两个刚度度(12和18 kPa)的软质聚乙烯醇(PVA)基材上进行了测试,并以硬玻璃基板为参考。一种无尘胶体光刻方法已成功地扩展到制造具有两种几何形状的粘合剂,即带有和不带有终端层的凹痕。没有端子层的凹坑是在两个长度尺度上制造的,即具有亚微米尺度和微米尺度的凹坑直径。具有末端层的样品的横截面显示出由沙漏形壁隔开的球形空隙。这些空隙穿透端子层,从而在表面形成一排孔。我们发现,通常在软质基材上,凹坑的尺寸不会影响拉脱力。如文献中报道的,对于硬质基材,亚微米级特征对剥离力和摩擦力的积极影响(例如缺陷控制和裂纹捕获)似乎在软质基材上消失了。与其他几何形状相比,带有末端层的凹坑几何形状产生明显更高的拉脱力,这可能是由于软质基材互锁到端子层的孔中。对于所有测试的几何形状,从软质基材上拉下的胶料随基材硬度的增加而增加。对于没有末端层的微型凹痕,在软性基底上的摩擦力最高,这可能是由于凹痕之间的软性基底互锁。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号