...
首页> 外文期刊>BMC Biotechnology >Utilizing high-throughput experimentation to enhance specific productivity of an E.coli T7 expression system by phosphate limitation
【24h】

Utilizing high-throughput experimentation to enhance specific productivity of an E.coli T7 expression system by phosphate limitation

机译:利用高通量实验通过磷酸盐限制提高大肠杆菌T7表达系统的比生产率

获取原文

摘要

Background The specific productivity of cultivation processes can be optimized, amongst others, by using genetic engineering of strains, choice of suitable host/vector systems or process optimization (e.g. choosing the right induction time). A further possibility is to reduce biomass buildup in favor of an enhanced product formation, e.g. by limiting secondary substrates in the medium, such as phosphate. However, with conventional techniques (e.g. small scale cultivations in shake flasks), it is very tedious to establish optimal conditions for cell growth and protein expression, as the start of protein expression (induction time) and the degree of phosphate limitation have to be determined in numerous concerted, manually conducted experiments. Results We investigated the effect of different induction times and a concurrent phosphate limitation on the specific productivity of the T7 expression system E.coli BL21(DE3) pRhotHi-2-EcFbFP, which produces the model fluorescence protein EcFbFP upon induction. Therefore, specific online-monitoring tools for small scale cultivations (RAMOS, BioLector) as well as a novel cultivation platform (Robo-Lector) were used for rapid process optimization. The RAMOS system monitored the oxygen transfer rate in shake flasks, whereas the BioLector device allowed to monitor microbial growth and the production of EcFbFP in microtiter plates. The Robo-Lector is a combination of a BioLector and a pipetting robot and can conduct high-throughput experiments fully automated. By using these tools, it was possible to determine the optimal induction time and to increase the specific productivity for EcFbFP from 22% (for unlimited conditions) to 31% of total protein content of the E.coli cells via a phosphate limitation. Conclusions The results revealed that a phosphate limitation at the right induction time was suitable to redirect the available cellular resources during cultivation to protein expression rather than in biomass production. To our knowledge, such an effect was shown for the first time for an IPTG -inducible expression system. Finally, this finding and the utilization of the introduced high-throughput experimentation approach could help to find new targets to further enhance the production capacity of recombinant E.coli -strains.
机译:背景技术可以通过使用菌株的基因工程,选择合适的宿主/载体系统或过程优化(例如,选择合适的诱导时间)来优化栽培过程的单位生产力。进一步的可能性是减少生物质的积累,从而有利于增加产品的形成,例如,增加生物质。通过限制介质中的次生底物,例如磷酸盐。但是,使用常规技术(例如在摇瓶中进行小规模培养),为细胞生长和蛋白质表达建立最佳条件非常繁琐,因为必须确定蛋白质表达的开始时间(诱导时间)和磷酸盐限制的程度。在众多协同,手动进行的实验中结果我们研究了不同诱导时间和同时存在的磷酸盐限制对T7表达系统大肠杆菌BL21(DE3)pRhotHi-2-EcFbFP的比生产力的影响,该系统在诱导时产生模型荧光蛋白EcFbFP。因此,用于小型种植的特定在线监控工具(RAMOS,BioLector)以及新型种植平台(Robo-Lector)被用于快速的工艺优化。 RAMOS系统监控摇瓶中的氧气传输速率,而BioLector设备允许监控微量滴定板中的微生物生长和EcFbFP的产生。 Robo-Lector是BioLector和移液机器人的组合,可以全自动进行高通量实验。通过使用这些工具,可以确定最佳诱导时间,并通过磷酸盐限制将EcFbFP的比生产率从大肠杆菌细胞总蛋白含量的22%(无限制条件)提高到31%。结论结果表明,在正确的诱导时间限制磷酸盐的作用是将培养过程中可用的细胞资源重定向到蛋白质表达而不是生物质生产。据我们所知,这种作用首次在IPTG诱导表达系统中表现出来。最后,该发现和引入的高通量实验方法的利用可以帮助寻找新的靶标,以进一步提高重组大肠杆菌菌株的生产能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号