...
首页> 外文期刊>Biotechnology for Biofuels >Metatranscriptomic analysis of lignocellulolytic microbial communities involved in high-solids decomposition of rice straw
【24h】

Metatranscriptomic analysis of lignocellulolytic microbial communities involved in high-solids decomposition of rice straw

机译:参与稻草高固含量分解的木质纤维素分解微生物群落的转录组分析

获取原文
           

摘要

Background New lignocellulolytic enzymes are needed that maintain optimal activity under the harsh conditions present during industrial enzymatic deconstruction of biomass, including high temperatures, the absence of free water, and the presence of inhibitors from the biomass. Enriching lignocellulolytic microbial communities under these conditions provides a source of microorganisms that may yield robust lignocellulolytic enzymes tolerant to the extreme conditions needed to improve the throughput and efficiency of biomass enzymatic deconstruction. Identification of promising enzymes from these systems is challenging due to complex substrate-enzyme interactions and requirements to assay for activity. In this study, metatranscriptomes from compost-derived microbial communities enriched on rice straw under thermophilic and mesophilic conditions were sequenced and analyzed to identify lignocellulolytic enzymes overexpressed under thermophilic conditions. To determine differential gene expression across mesophilic and thermophilic treatments, a method was developed which pooled gene expression by functional category, as indicated by Pfam annotations, since microbial communities performing similar tasks are likely to have overlapping functions even if they share no specific genes. Results Differential expression analysis identified enzymes from glycoside hydrolase family 48, carbohydrate binding module family 2, and carbohydrate binding module family 33 domains as significantly overexpressed in the thermophilic community. Overexpression of these protein families in the thermophilic community resulted from expression of a small number of genes not currently represented in any protein database. Genes in overexpressed protein families were predominantly expressed by a single Actinobacteria genus, Micromonospora. Conclusions Coupling measurements of deconstructive activity with comparative analyses to identify overexpressed enzymes in lignocellulolytic communities provides a targeted approach for discovery of candidate enzymes for more efficient biomass deconstruction. Glycoside hydrolase family 48 cellulases and carbohydrate binding module family 33 polysaccharide monooxygenases with carbohydrate binding module family 2 domains may improve saccharification of lignocellulosic biomass under high-temperature and low moisture conditions relevant to industrial biofuel production.
机译:背景技术需要新的木质纤维素分解酶,以在生物质的工业酶解过程中存在的苛刻条件下保持最佳活性,所述苛刻条件包括高温,不存在游离水以及存在来自生物质的抑制剂。在这些条件下富集木质纤维素分解微生物群落提供了微生物来源,该微生物来源可以产生鲁棒的木质纤维素分解酶,其耐受提高生物量酶解构筑的通量和效率所需的极端条件。由于复杂的底物-酶相互作用和活性测定要求,从这些系统中鉴定有希望的酶具有挑战性。在这项研究中,对来自在高温和中温条件下富含稻草的堆肥微生物群落的转录组进行了测序和分析,以鉴定在高温条件下过表达的木质纤维素分解酶。为了确定中温和高温处理之间的差异基因表达,开发了一种方法,该方法按功能类别汇总基因表达,如Pfam注释所示,因为执行相似任务的微生物群落即使不共享特定基因也可能具有重叠功能。结果差异表达分析鉴定了来自糖苷水解酶家族48,碳水化合物结合模块家族2和碳水化合物结合模块家族33结构域的酶在嗜热群落中显着过表达。这些蛋白质家族在嗜热群落中的过表达是由于目前尚未在任何蛋白质数据库中代表的少数基因的表达所致。过度表达的蛋白家族中的基因主要由单个放线菌属Micromonospora表达。结论解构活性的测量与比较分析相结合,以识别木质纤维素分解社区中过表达的酶,为发现候选酶提供了一种有针对性的方法,从而可以更有效地解构生物质。糖苷水解酶家族48纤维素酶和碳水化合物结合模块家族33具有碳水化合物结合模块家族2结构域的多糖单加氧酶可以改善木质纤维素生物质在与工业生物燃料生产相关的高温和低水分条件下的糖化作用。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号