...
首页> 外文期刊>Biotechnology for Biofuels >Effects of lignin modification on wheat straw cell wall deconstruction by Phanerochaete chrysosporium
【24h】

Effects of lignin modification on wheat straw cell wall deconstruction by Phanerochaete chrysosporium

机译:木质素修饰对Phanerochaete chrysosporium破坏小麦秸秆细胞壁的影响

获取原文

摘要

Background A key focus in sustainable biofuel research is to develop cost-effective and energy-saving approaches to increase saccharification of lignocellulosic biomass. Numerous efforts have been made to identify critical issues in cellulose hydrolysis. Aerobic fungal species are an integral part of the carbon cycle, equip the hydrolytic enzyme consortium, and provide a gateway for understanding the systematic degradation of lignin, hemicelluloses, and cellulose. This study attempts to reveal the complex biological degradation process of lignocellulosic biomass by Phanerochaete chrysosporium in order to provide new knowledge for the development of energy-efficient biorefineries. Results In this study, we evaluated the performance of a fungal biodegradation model, Phanerochaete chrysosporium, in wheat straw through comprehensive analysis. We isolated milled straw lignin and cellulase enzyme-treated lignin from fungal-spent wheat straw to determine structural integrity and cellulase absorption isotherms. The results indicated that P. chrysosporium increased the total lignin content in residual biomass and also increased the cellulase adsorption kinetics in the resulting lignin. The binding strength increased from 117.4 mL/g to 208.7 mL/g in milled wood lignin and from 65.3 mL/g to 102.4 mL/g in cellulase enzyme lignin. A detailed structural dissection showed a reduction in the syringyl lignin/guaiacyl lignin ratio and the hydroxycinnamate/lignin ratio as predominant changes in fungi-spent lignin by heteronuclear single quantum coherence spectroscopy. Conclusion P. chrysosporium shows a preference for degradation of phenolic terminals without significantly destroying other lignin components to unzip carbohydrate polymers. This is an important step in fungal growth on wheat straw. The phenolics presumably locate at the terminal region of the lignin moiety and/or link with hemicellulose to form the lignin-carbohydrate complex. Findings may inform the development of a biomass hydrolytic enzyme combination to enhance lignocellulosic biomass hydrolysis and modify the targets in plant cell walls.
机译:背景技术可持续生物燃料研究的重点是开发具有成本效益的节能方法,以增加木质纤维素生物质的糖化程度。已经进行了许多努力来确定纤维素水解中的关键问题。有氧真菌物种是碳循环的重要组成部分,配备了水解酶联盟,并为理解木质素,半纤维素和纤维素的系统降解提供了途径。本研究试图揭示Phanerochaete chrysosporium对木质纤维素生物质的复杂生物降解过程,以便为开发节能型生物精炼厂提供新的知识。结果在这项研究中,我们通过综合分析评估了小麦秸秆中真菌生物降解模型Phanerochaete chrysosporium的性能。我们从用过真菌的小麦秸秆中分离了经过碾磨的秸秆木质素和纤维素酶处理过的木质素,以确定结构完整性和纤维素酶吸收等温线。结果表明,金孢假单胞菌增加了残留生物量中的总木质素含量,并且还提高了所得木质素中的纤维素酶吸附动力学。在磨碎的木质素中,结合强度从117.4 mL / g增加到208.7 mL / g,在纤维素酶木质素中,结合强度从65.3 mL / g增加到102.4 mL / g。详细的结构解剖显示,通过异核单量子相干光谱法可知,真菌消耗的木质素的主要变化是丁香基木质素/愈创木基木质素比和羟基肉桂酸酯/木质素比降低。结论金黄色葡萄球菌显示出对酚类末端降解的偏好,而不会显着破坏其他木质素组分来解开碳水化合物聚合物的拉链。这是小麦秸秆上真菌生长的重要一步。酚类化合物大概位于木质素部分的末端区域和/或与半纤维素连接形成木质素-碳水化合物复合物。这些发现可能有助于生物质水解酶组合的发展,以增强木质纤维素生物质的水解并修饰植物细胞壁中的靶标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号