首页> 外文期刊>BMC Biotechnology >Enzymatic properties of Thermoanaerobacterium thermosaccharolyticum β-glucosidase fused to Clostridium cellulovorans cellulose binding domain and its application in hydrolysis of microcrystalline cellulose
【24h】

Enzymatic properties of Thermoanaerobacterium thermosaccharolyticum β-glucosidase fused to Clostridium cellulovorans cellulose binding domain and its application in hydrolysis of microcrystalline cellulose

机译:溶热嗜热厌氧杆菌β-葡萄糖苷酶与纤维素梭菌纤维素结合域融合的酶学性质及其在微晶纤维素水解中的应用

获取原文
           

摘要

Background The complete degradation of the cellulose requires the synergistic action of endo-β-glucanase, exo-β-glucanase, and β-glucosidase. But endo-β-glucanase and exo-β-glucanase can be recovered by solid–liquid separation in cellulose hydrolysis by their cellulose binding domain (CBD), however, the β-glucosidases cannot be recovered because of most β-glucosidases without the CBD, so additional β-glucosidases are necessary for the next cellulose degradation. This will increase the cost of cellulose degradation. Results The glucose-tolerant β-glucosidase (BGL) from Thermoanaerobacterium thermosaccharolyticum DSM 571 was fused with cellulose binding domain (CBD) of Clostridium cellulovorans cellulosome anchoring protein by a peptide linker. The fusion enzyme (BGL-CBD) gene was overexpressed in Escherichia coli with the maximum β-glucosidase activity of 17 U/mL. Recombinant BGL-CBD was purified by heat treatment and following by Ni-NTA affinity. The enzymatic characteristics of the BGL-CBD showed optimal activities at pH?6.0 and 65°C. The fusion of CBD structure enhanced the hydrolytic efficiency of the BGL-CBD against cellobiose, which displayed a 6-fold increase in V max / K m in comparison with the BGL. A gram of cellulose was found to absorb 643 U of the fusion enzyme (BGL-CBD) in pH?6.0 at 50°C for 25?min with a high immobilization efficiency of 90%. Using the BGL-CBD as the catalyst, the yield of glucose reached a maximum of 90% from 100?g/L cellobiose and the BGL-CBD could retain over 85% activity after five batches with the yield of glucose all above 70%. The performance of the BGL-CBD on microcrystalline cellulose was also studied. The yield of the glucose was increased from 47% to 58% by adding the BGL-CBD to the cellulase, instead of adding the Novozyme 188. Conclusions The hydrolytic activity of BGL-CBD is greater than that of the Novozyme 188 in cellulose degradation. The article provides a prospect to decrease significantly the operational cost of the hydrolysis process.
机译:背景技术纤维素的完全降解需要内切β-葡聚糖酶,外切β-葡聚糖酶和β-葡糖苷酶的协同作用。但是内切-β-葡聚糖酶和外切-β-葡聚糖酶可以通过其纤维素结合域(CBD)在纤维素水解中进行固液分离来回收,但是,β-葡萄糖苷酶无法回收,因为大多数没有CBD的β-葡萄糖苷酶,因此额外的β-葡萄糖苷酶对于下一次纤维素降解是必需的。这将增加纤维素降解的成本。结果通过肽接头将来自解热嗜热厌氧杆菌DSM 571的耐葡萄糖β-葡糖苷酶(BGL)与梭状芽胞杆菌纤维素体锚定蛋白的纤维素结合域(CBD)融合。融合酶(BGL-CBD)基因在大肠杆菌中过表达,最大β-葡萄糖苷酶活性为17 U / mL。通过热处理并随后通过Ni-NTA亲和力纯化重组的BGL-CBD。 BGL-CBD的酶促特性在pH?6.0和65°C下显示出最佳活性。 CBD结构的融合增强了BGL-CBD对纤维二糖的水解效率,与BGL相比,V max / K m 增加了6倍。发现一克纤维素在50℃下在pH≥6.0的条件下可吸收643 U的融合酶(BGL-CBD)25?min,固定效率高达90%。使用BGL-CBD作为催化剂,从100?g / L纤维二糖中葡萄糖的收率最高达到90%,BGL-CBD可以在五批后保留超过85%的活性,且葡萄糖的收率均高于70%。还研究了BGL-CBD在微晶纤维素上的性能。通过向纤维素酶中添加BGL-CBD而不是添加Novozyme 188,葡萄糖的产率从47%增加到58%。结论BGL-CBD在纤维素降解方面的水解活性高于Novozyme 188。该文章提供了显着降低水解过程的操作成本的前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号