首页> 外文期刊>Biotechnology for Biofuels >Carbohydrate-binding modules (CBMs) revisited: reduced amount of water counterbalances the need for CBMs
【24h】

Carbohydrate-binding modules (CBMs) revisited: reduced amount of water counterbalances the need for CBMs

机译:碳水化合物结合模块(CBMs):减少水的量平衡了对CBMs的需求

获取原文
           

摘要

Background A vast number of organisms are known to produce structurally diversified cellulases capable of degrading cellulose, the most abundant biopolymer on earth. The generally accepted paradigm is that the carbohydrate-binding modules (CBMs) of cellulases are required for efficient saccharification of insoluble substrates. Based on sequence data, surprisingly more than 60% of the cellulases identified lack carbohydrate-binding modules or alternative protein structures linked to cellulases (dockerins). This finding poses the question about the role of the CBMs: why would most cellulases lack CBMs, if they are necessary for the efficient hydrolysis of cellulose? Results The advantage of CBMs, which increase the affinity of cellulases to substrates, was found to be diminished by reducing the amount of water in the hydrolytic system, which increases the probability of enzyme-substrate interaction. At low substrate concentration (1% w/w), CBMs were found to be more important in the catalytic performance of the cellobiohydrolases TrCel7A and TrCel6A of Trichoderma reesei as compared to that of the endoglucanases TrCel5A and TrCel7B. Increasing the substrate concentration while maintaining the enzyme-to-substrate ratio enhanced adsorption of TrCel7A, independent of the presence of the CBM. At 20% (w/w) substrate concentration, the hydrolytic performance of cellulases without CBMs caught up with that of cellulases with CBMs. This phenomenon was more noticeable on the lignin-containing pretreated wheat straw as compared to the cellulosic Avicel, presumably due to unproductive adsorption of enzymes to lignin. Conclusions Here we propose that the water content in the natural environments of carbohydrate-degrading organisms might have led to the evolution of various substrate-binding structures. In addition, some well recognized problems of economical saccharification such as unproductive binding of cellulases, which reduces the hydrolysis rate and prevents recycling of enzymes, could be partially overcome by omitting CBMs. This finding could help solve bottlenecks of enzymatic hydrolysis of lignocelluloses and speed up commercialization of second generation bioethanol.
机译:背景技术已知许多生物体会产生结构多样化的纤维素酶,所述纤维素酶能够降解纤维素(地球上最丰富的生物聚合物)。普遍接受的范例是纤维素酶的碳水化合物结合模块(CBM)是不溶性底物的有效糖化所必需的。根据序列数据,出乎意料的是,超过60%的纤维素酶缺乏与纤维素酶(dockerins)连接的碳水化合物结合模块或其他蛋白质结构。这一发现提出了关于煤层气作用的问题:如果纤维素有效水解所必需的话,为什么大多数纤维素酶都缺乏煤层气?结果发现,通过减少水解系统中的水量,降低了增加纤维素酶与底物亲和力的CBM的优势,从而增加了酶与底物相互作用的可能性。在低底物浓度(1%w / w)下,与内切葡聚糖酶TrCel5A和TrCel7B相比,发现CBM在里氏木霉纤维二糖水解酶TrCel7A和TrCel6A的催化性能中更为重要。与CBM的存在无关,在保持酶与底物比的同时增加底物浓度可增强TrCel7A的吸附。在20%(w / w)的底物浓度下,不含CBM的纤维素酶的水解性能赶上含CBM的纤维素酶的水解性能。与纤维素Avicel相比,这种现象在含木质素的预处理小麦秸秆上更为明显,这可能是由于酶对木质素的非生产性吸附。结论我们在此提出,降解碳水化合物的生物的自然环境中的水分可能导致了各种底物结合结构的演变。另外,通过省略CBM可以部分克服一些公认的经济糖化问题,例如纤维素酶的非生产性结合,这降低了水解速率并阻止了酶的再循环。这一发现可能有助于解决木质纤维素酶促水解的瓶颈,并加速第二代生物乙醇的商业化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号