首页> 外文期刊>IEEE Design & Test of Computers Magazine >IC Outlier Identification Using Multiple Test Metrics
【24h】

IC Outlier Identification Using Multiple Test Metrics

机译:使用多种测试指标进行IC离群值识别

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

WITH ADVANCES in semiconductor manufacturing processes, ICs become faster, more powerful, and more densely packed. This in turn makes testing difficult, especially for deep-submicron chips (http://public.itrs.net). Engineers use parametric tests to evaluate different IC parameters like speed or leakage current (I_(DDQ)). If a parameter is outside a predetermined limit or threshold, the chip is considered defective. For example, a chip can operate too slowly (a delay failure) or consume excessive I_(DDQ). Engineers usually determine the pass/fail threshold by taking a sample of chips from the initial production for characterization. Alternatively, they can build device models and determine a threshold through simulation. Chips that fail only parametric tests do not meet their specifications completely, but are functional. However, manufacturers can reject such chips for reliability reasons. With the reduction in transistor geometries, precise process control of manufacturing becomes more difficult. This leads to variation in transistor parameters, both within a chip and within a wafer (across chips). This results in a large spread in fault-free parameter values. For example, I_(DDQ) increases exponentially as you scale down transistors. As a result, setting the pass/fail threshold becomes difficult because the overlap between fault-free and faulty distributions invariably results in yield loss and/or test escapes. If you plot a distribution of test parameters for different chips, the defective chips appear as outliers in the tail of the distribution. Screening these chips is therefore, in principle, similar to statistical outlier rejection. Since statistical outlier rejection is a well-researched topic, this opens up a wide variety of statistical methods for application to VLSI testing. This article presents an overview of the application of outlier identification methodology for VLSI test, using industrial test data.
机译:随着半导体制造工艺的发展,IC变得更快,功能更强大且封装更紧密。这反过来使测试变得困难,尤其是对于深亚微米芯片(http://public.itrs.net)。工程师使用参数测试来评估不同的IC参数,例如速度或泄漏电流(I_(DDQ))。如果参数超出预定限制或阈值,则认为芯片有缺陷。例如,芯片可能运行太慢(延迟故障)或消耗过多的I_(DDQ)。工程师通常通过从初始生产中获取芯片样本进行表征来确定通过/失败阈值。或者,他们可以建立设备模型并通过仿真确定阈值。仅通过参数测试失败的芯片不能完全满足其规格,但可以正常工作。但是,出于可靠性考虑,制造商可以拒绝此类芯片。随着晶体管几何形状的减小,制造的精确过程控制变得更加困难。这导致芯片内和晶片内(跨芯片)的晶体管参数变化。这导致无故障参数值的大量散布。例如,随着晶体管的缩小,I_(DDQ)呈指数增长。结果,设置合格/不合格阈值变得困难,因为无故障和有故障的分布之间的重叠始终会导致良率损失和/或测试失败。如果绘制不同芯片的测试参数分布,则有缺陷的芯片在分布的尾部显示为离群值。因此,原则上,筛选这些芯片类似于统计异常值剔除。由于统计异常值剔除是一个经过充分研究的主题,因此这为VLSI测试提供了广泛的统计方法。本文概述了使用工业测试数据的异常识别方法在VLSI测试中的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号