首页> 外文期刊>Defence Science Journal >Finite Element Method-based Design and Simulations of Micro-cantilever Platform for Chemical and Bio-sensing Applications
【24h】

Finite Element Method-based Design and Simulations of Micro-cantilever Platform for Chemical and Bio-sensing Applications

机译:基于有限元方法的化学和生物传感应用微悬臂平台设计与仿真

获取原文
获取原文并翻译 | 示例
           

摘要

Micro-electro-mechanical systems (MEMS)-based cantilever platform have capability for the detection of chemical and biological agents. This paper reports about the finite element method (FEM) based design and simulations of MEMS-based piezoresistor cantilever platform to be used for detection of chemical and biological toxic agents. Bulk micromachining technique is adopted for the realisation of the device structure. MEMS piezoresistive biosensing platforms are having potential for a field-based label-free detection of various types of bio-molecules. Using the MEMMECH module of CoventorWare (R) simulations are performed on the designed model of the device and it is observed that principal stress is maximum along the length (among other dimensions of the micro-cantilever) and remains almost constant for 90 per cent of the length of the micro-cantilever. The dimensions of piezoresistor are optimised and the output voltage vs. stress analysis for various lengths of the piezoresistor is performed using the MEMPZR module of the CoventorWare (R)
机译:基于微机电系统(MEMS)的悬臂平台具有检测化学和生物制剂的能力。本文报道了基于有限元方法(FEM)的基于MEMS的压敏电阻悬臂平台的设计和仿真,该平台用于检测化学和生物有毒物质。采用块体微加工技术来实现器件结构。 MEMS压阻式生物传感平台具有潜力,可用于各种类型生物分子的基于现场的无标记检测。使用CoventorWare(R)的MEMMECH模块,在该设备的设计模型上进行了仿真,发现主应力沿长度方向(在微悬臂梁的其他尺寸中)最大,并且在90%的方向上几乎保持恒定。微悬臂梁的长度。优化了压敏电阻的尺寸,并使用CoventorWare(R)的MEMPZR模块对各种长度的压敏电阻进行了输出电压与应力分析

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号