...
首页> 外文期刊>Cybernetics, IEEE Transactions on >Evolving Transport Networks With Cellular Automata Models Inspired by Slime Mould
【24h】

Evolving Transport Networks With Cellular Automata Models Inspired by Slime Mould

机译:受粘液霉菌启发的具有细胞自动机模型的不断发展的运输网络

获取原文
获取原文并翻译 | 示例
           

摘要

Man-made transport networks and their design are closely related to the shortest path problem and considered amongst the most debated problems of computational intelligence. Apart from using conventional or bio-inspired computer algorithms, many researchers tried to solve this kind of problem using biological computing substrates, gas-discharge solvers, prototypes of a mobile droplet, and hot ice computers. In this aspect, another example of biological computer is the plasmodium of acellular slime mould , which is a large single cell visible by an unaided eye and has been proven as a reliable living substrate for implementing biological computing devices for computational geometry, graph-theoretical problems, and optimization and imitation of transport networks. Although is easy to experiment with, computing devices built with the living slime mould are extremely slow; it takes slime mould days to execute a computation. Consequently, mapping key computing mechanisms of the slime mould onto silicon would allow us to produce efficient bio-inspired computing devices to tackle with hard to solve computational intelligence problems like the aforementioned. Toward this direction, a cellular automaton (CA)-based, Physarum-inspired, network designing model is proposed. This novel CA-based model is inspired by the propagating strategy, the formation of tubular networks, and the computing abilities of the plasmodium of . The results delivered by the CA model demonstrate a good match with several previously published results of experimental laboratory studies on imitation of man-made transport networks with . Consequently, the proposed CA model can be used as a virtual, easy-to-access, and biomimicking laboratory emulator that will economize large time periods needed for biological experiments while producing networks almost - dentical to the tubular networks of the real-slime mould.
机译:人为的运输网络及其设计与最短路径问题密切相关,并在辩论最激烈的计算智能问题中得到考虑。除了使用传统的或受生物启发的计算机算法外,许多研究人员还尝试使用生物计算基质,气体排放求解器,可移动液滴的原型以及热冰计算机来解决此类问题。在这方面,生物计算机的另一个示例是无细胞粘液霉菌的疟原虫,它是一个大的单细胞,肉眼可见,并且已被证明是用于实现用于计算几何学,图论问题的生物计算设备的可靠的生物基质。 ,以及运输网络的优化和模仿。尽管很容易进行实验,但使用活动煤泥模具构建的计算设备却非常慢。执行计算需要花费粘液模具天数。因此,将粘液模具的关键计算机制映射到硅上将使我们能够生产出高效的,受生物启发的计算设备,以解决上述难以解决的计算智能问题。朝这个方向,提出了一种基于细胞自动机(CA),受Physarum启发的网络设计模型。这个新颖的基于CA的模型的灵感来自传播策略,管状网络的形成以及疟原虫的疟原虫的计算能力。 CA模型提供的结果证明与先前发表的关于仿制人为运输网络的实验实验室研究的结果非常吻合。因此,提出的CA模型可以用作虚拟的,易于访问的仿生实验室仿真器,它可以节省生物学实验所需的大量时间,同时生成几乎与实胶模具的管状网络相对应的网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号