首页> 外文期刊>Cryptography and Communications >On the number of the rational zeros of linearized polynomials and the second-order nonlinearity of cubic Boolean functions
【24h】

On the number of the rational zeros of linearized polynomials and the second-order nonlinearity of cubic Boolean functions

机译:关于线性化多项式的理性零的数量和立方布尔函数的二阶非线性

获取原文
获取原文并翻译 | 示例
           

摘要

Abstract Determine the number of the rational zeros of any given linearized polynomial is one of the vital problems in finite field theory, with applications in modern symmetric cryptosystems. But, the known general theory for this task is much far from giving the exact number when applied to a specific linearized polynomial. The first contribution of this paper is a better general method to get a more precise upper bound on the number of rational zeros of any given linearized polynomial over arbitrary finite field. We anticipate this method would be applied as a useful tool in many research branches of finite field and cryptography. Really we apply this result to get tighter estimations of the lower bounds on the second-order nonlinearities of general cubic Boolean functions, which has been an active research problem during the past decade. Furthermore, this paper shows that by studying the distribution of radicals of derivatives of a given Boolean function one can get a better lower bound of the second-order nonlinearity, through an example of the monomial Boolean functions gμ=Tr(μx22r+2r+1)documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$g_{mu }=Tr(mu x^{2^{2r}+2^{r}+1})$end{document} defined over the finite field F2ndocumentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}${mathbb F}_{2^{n}}$end{document}.
机译:摘要确定任何给定线性化多项式的理性零的数量是有限场理论中的重要问题之一,在现代对称密码系统中的应用。但是,当应用于特定的线性化多项式时,该任务的已知一般理论远远远非给出确切的数字。本文的第一贡献是一种更好的一般方法,以获得更精确的上限,以在任意有限场上的任何给定线性化多项式的任何给定的线性化多项式的理性零数。我们预期此方法将作为有限场和密码学的许多研究分支应用于一个有用的工具。实际上我们应用了这一结果,以获得普通立方布尔函数的二阶非线性下限的更紧密估计,这在过去十年中一直是积极的研究问题。此外,本文通过研究了给定布尔函数的衍生物的衍生物的衍生物的分布,可以通过单项布尔函数Gμ= Tr(μX22R+ 2R + 1的示例来获得二阶非线性的衍生物的衍生物的分布。 ) documentClass [12pt] {minimal} usepackage {ammath} usepackage {isysym} usepackage {amsfonts} usepackage {amssymb} usepackage {amsbsy} usepackage {mathrsfs} usepackage {supmez} setLength { oddsidemargin} {-69pt} begin {document} $ g _ { mu} = tr( mu x ^ {2 ^ {2r} + 2 ^ {r} +1})$ end {document}在有限字段f2n上定义 DocumentClass [12pt] {minimal} usepackage {ammath} usepackage {keysym} usepackage {amsfonts} usepackage {amssysfs} usepackage {mathrsfs} usepackage {supmeek} setLength { oddsidemargin} { -69pt} begin {document} $ { mathbb f} _ {2 ^ {n}} $ end {document}。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号