首页> 外文期刊>Crop and Pasture Science >Preface to Special Issue: Complex traits and plant breeding—can we understand the complexities of gene-to-phenotype relationships and use such knowledge to enhance plant breeding outcomes?
【24h】

Preface to Special Issue: Complex traits and plant breeding—can we understand the complexities of gene-to-phenotype relationships and use such knowledge to enhance plant breeding outcomes?

机译:特刊前言:复杂的性状和植物育种—我们能否理解基因表型关系的复杂性,并利用这些知识来增强植物育种成果?

获取原文
获取原文并翻译 | 示例
           

摘要

Some would argue that the answer to the question we pose innthe title of this introductory paper is already known, and is yes.nFor some traits, e.g. resistance to particular pests and diseases,nthere is no doubt that we have used detailed knowledge of thengenetics that underlies trait phenotypic variation to enhancenthe performance of the product outcomes from plant breedingn(e.g. Cahill and Schmidt 2004). However, we also recognisenthat plant breeding is fundamentally an undertaking in multitraitnimprovement and that there are many important traitsnwhere we do not yet have a sufficient knowledge of the causalngenetic variation to enable similar approaches. Therefore, wenuse these initial successes as encouragement and to argue forna continuation of research on other traits.nThe papers included in this Special Issue of the AustraliannJournal of Agricultural Research are focussed aroundntwo related questions that impinge on our ambitions andnabilities to enable knowledge-based approaches to molecularnenhanced breeding: (1) the feasibility of, and (2) appropriatenstrategies for, constructing predictive gene-to-phenotypenmodels of complex traits. Although it can be argued that thentraits manipulated in plant breeding programs range fromngenetically simple to complex, most of the important traitsnthat have preoccupied the field of quantitative genetics andnplant breeders are towards the complex end of this continuum.nPlant breeders have consistently demonstrated significantncapacity to make desirable changes to many of the complexnyield, quality, and agronomic traits of crop plants that arenconsidered important for sustainable production in theirnrespective target agricultural systems. Most often studiesnconducted to quantify genetic progress from breeding havenfocussed on the key endpoint traits, such as the improvementnof grain yield and associated changes in other traits (e.g.nFehr 1984; Duvick et al. 2004). Although several of thesenretrospective studies have found a tendency for increasednyield to arise from change in biomass partitioning rathernthan increased total biomass production, many of the geneticnand physiological details underpinning the improvementsnin yield varied among breeding programs and with thenperiod of investigation (Duvick et al. 2004). Further, theirneffect in the intended target environments depended on thencrop and on features of the environments within the targetnproduction system (Allard 1999). It is widely recognised thatnrealising much of the genetic improvements from breeding isnconditional on the use of appropriate agronomic managementnpractices. The interplay between genotype, management, andnenvironment is critical in realising improvements in cropnperformance (Cooper and Hammer 1996; Cooper et al. 2002;nYin et al. 2004). The ubiquitous nature of these interactions,nand the degree to which they are considered in breedingnprograms, have contributed to an ongoing debate about thenextent of the outcomes from breeding that are realised byndifferent groups of farmers in the diversity of the global targetnproduction systems.
机译:有人会争辩说,我们在这篇介绍性论文的标题中提出的问题的答案是已知的,是的.n对于某些特征,例如抗特定病虫害的能力,毫无疑问,我们已经利用了特质表型变异基础的遗传学知识来增强植物育种产品的性能(例如Cahill和Schmidt 2004)。但是,我们也认识到,植物育种从根本上说就是多性状改良的一项工作,而且在我们还没有足够的因果遗传变异知识的基础上,有许多重要的特征可以采取类似的方法。因此,请以这些最初的成功为鼓励,并主张继续进行其他性状的研究。n《澳大利亚农业研究》这一期特刊所载的论文集中在两个相关的问题上,这些问题影响了我们的雄心和能力,使基于知识的方法能够分子增强育种:(1)建立复杂性状的预测基因-表型模型的可行性和(2)适当的策略。尽管可以说植物育种程序中操纵的性状从遗传上简单到复杂,但是大多数重要的性状已经集中在定量遗传学领域,而植物育种者正朝着这一连续体的复杂末端发展。作物植物的许多复杂,品质和农艺性状的变化,对于各自目标农业系统中的可持续生产而言,都被认为是重要的。为了量化育种的遗传进展而进行的大多数研究都集中在关键的端点性状上,例如谷物产量的提高以及其他性状的相关变化(例如nFehr 1984; Duvick等人2004)。尽管一些回顾性研究发现生物量分配变化而不是总生物量产量增加导致产量增加的趋势,但许多育种程序和随后的调查研究表明,提高产量的许多遗传和生理学细节都不尽相同(Duvick等人2004)。 。此外,它们在预期目标环境中的效果取决于目标生产系统内的作物和环境的特征(Allard,1999)。众所周知,从育种中实现许多遗传改良并不以使用适当的农艺管理方法为条件。基因型,管理和环境之间的相互作用对于实现作物性能的提高至关重要(Cooper和Hammer 1996; Cooper等人2002; nYin等人2004)。这些相互作用的普遍性,以及在育种计划中所考虑的程度,已经引起了关于由不同目标群体在全球目标生产系统多样性中实现的育种成果范围的持续辩论。

著录项

  • 来源
    《Crop and Pasture Science》 |2005年第9期|p.869-872|共4页
  • 作者单位

    A Pioneer Hi-Bred International Inc., 7250 N. W. 62nd Avenue, PO Box 552, Johnston, IA 50131, USA. B Agricultural Production Systems Research Unit, School of Land and Food Sciences, The University of Queensland, Brisbane, Qld 4072, Australia. C Agricultural Production Systems Research Unit, Queensland Department of Primary Industries and Fisheries, Toowoomba, Qld 4350, Australia. D Corresponding author. Email: Mark.Cooper@pioneer.com;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    modelling, prediction, epistasis, pleiotropy, interaction.;

    机译:建模;预测;上位性;多效性;相互作用。;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号