首页> 外文期刊>Control Theory & Applications, IET >Improving model predictive control arithmetic robustness by Monte Carlo simulations
【24h】

Improving model predictive control arithmetic robustness by Monte Carlo simulations

机译:通过蒙特卡洛模拟提高模型预测控制算法的鲁棒性

获取原文
获取原文并翻译 | 示例
           

摘要

Model predictive control (MPC) is an optimisation-based algorithm which usually requires a numerical method to calculate the solution of the problem. Inherently, numerical methods for optimisation problems are implemented on a finiteprecision hardware platform and are subject to the appearance of numerical instabilities of catastrophic cancellation and illconditioned matrices. These anomalies are difficult to detect and overcome, and for safety-critical applications, it is essential to have a mechanism that can at least issue a warning when an arithmetic instability occurs. Towards this direction, Monte Carlo arithmetic (MCA) for the floating-point (FP) number system has been used for both detection and mitigation of catastrophic cancellation and ill-conditioned matrices. An alternative to FP is the Logarithmic Number System (LNS) that recently has been proposed for the real-time hardware implementation of embedded MPC. In this study the authors present the adaptation of MCA to LNS for detecting and mitigating catastrophic cancellation, forming the Monte Carlo Logarithmic Number System (MCLNS). An inherent drawback of MCA is the accuracy deterioration which is a direct consequence of the randomisation in the arithmetic operations. Additionally, multiple simulations of the system result in performance deterioration equal to the number of simulations. Using off-line simulations it is possible to determine the necessary hardware requirements to achieve desired accuracy under performance constraints. These trade-offs are studied and analysed for an MPC algorithm, and the hardware implementation cost of MCLNS is quantified by synthesis on a Xilinx Virtex-IV FPGA.
机译:模型预测控制(MPC)是一种基于优化的算法,通常需要一种数值方法来计算问题的解决方案。本质上,用于优化问题的数值方法是在有限精度的硬件平台上实现的,并且遭受灾难性抵消和病态矩阵的数值不稳定性的影响。这些异常很难检测和克服,对于安全性至关重要的应用,必须具有一种机制,该机制至少可以在发生算术不稳定时发出警告。朝着这个方向,浮点数(FP)数系统的蒙特卡洛算法(MCA)已用于检测和缓解灾难性抵消和病态矩阵。 FP的替代方案是对数系统(LNS),最近已提出对数系统用于嵌入式MPC的实时硬件实现。在这项研究中,作者提出了MCA对LNS的适应性,以检测和减轻灾难性抵消,形成了蒙特卡洛对数系统(MCLNS)。 MCA的固有缺点是精度下降,这是算术运算中随机化的直接结果。此外,系统的多次仿真导致性能下降,其数量等于仿真次数。使用离线仿真,可以确定必要的硬件要求,以在性能约束下达到所需的精度。针对MPC算法对这些折衷进行了研究和分析,并且通过在Xilinx Virtex-IV FPGA上进行综合来量化MCLNS的硬件实现成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号